题目内容
如图,在ABC中,C=90°,AC="b," BC="a," P为三角形内的一点,且,
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│2+│PB│2=5│PC│2
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│2+│PB│2=5│PC│2
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.
以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再分别用两点距离公式即可,(3)将a=2-2b代入s的表达式,得到b的一个二次函数.
当b=0.8时,s最小.
当b=0.8时,s最小.
本试题主要是考查了建立直角坐标系来表示面积,得到二次函数的最值的问题。
根据已知条件先以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再运用两点距离公式得到关于b的表达式,进而得到面积的最小值。
根据已知条件先以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再运用两点距离公式得到关于b的表达式,进而得到面积的最小值。
练习册系列答案
相关题目