题目内容
已知椭圆的一个焦点为,且离心率为.
(1)求椭圆方程;
(2)斜率为的直线过点,且与椭圆交于两点,为直线上的一点,若△为等边三角形,求直线的方程.
(1);(2)直线的方程为,或.
解析试题分析:本题主要考查椭圆的标准方程以及几何性质、直线与椭圆相交问题、韦达定理、两点间距离公式、直线的方程等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的标准方程中a,b,c的关系,焦点坐标,离心率列出方程组,解出a和b,从而得到椭圆的标准方程;第二问,点斜式设出直线方程,由于直线与椭圆交于A,B,则直线与椭圆方程联立消参得到关于x的方程,设出A,B点坐标,利用韦达定理,得到,,再结合两点间距离公式求出的长,利用中点坐标公式得出AB中点M的坐标,从而求出|MP|的长,利用为正三角形,则,列出等式求出k的值,从而得到直线的方程.
(1)依题意有,.
可得,.
故椭圆方程为. 5分
(2)直线的方程为.
联立方程组
消去并整理得.
设,.
故,.
则.
设的中点为.
可得,.
直线的斜率为,又 ,
所以.
当△为正三角形时,,
可得,
解得.
即直线的方程为,或. 13分
考点:椭圆的标准方程以及几何性质、直线与椭圆相交问题、韦达定理、两点间距离公式、直线的方程.
练习册系列答案
相关题目