题目内容
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 ,(θ为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ= sinθ+cosθ,曲线C3的极坐标方程是θ= . (Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)曲线C3与曲线C1交于点O,A,曲线C3与曲线C2曲线交于点O,B,求|AB|.
【答案】解:(Ⅰ)曲线C1的参数方程为 ,(θ为参数),普通方程为(x﹣3)2+y2=9,x2+y2﹣6x=0, 由x=ρcosθ,y=ρsinθ,得ρ2﹣6ρcosθ=0,∴曲线C1的极坐标方程为ρ=6cosθ;
(Ⅱ)设点A的极坐标为(ρ1 , ),点B的极坐标为(ρ2 , ),则ρ1=6cos =3,ρ2= sin +cos =2,
所以AB|=|ρ1﹣ρ2|=1
【解析】(Ⅰ)先把参数方程转化为普通方程,利用由x=ρcosθ,y=ρsinθ可得极坐标方程;(Ⅱ)利用|AB|=|ρ1﹣ρ2|即可得出.
【题目】共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对,两个品牌的共享单车在编号分别为1,2,3,4,5的五个城市的用户人数(单位:十万)进行统计,得到数据如下:
城市品牌 | 1 | 2 | 3 | 4 | 5 |
品牌 | 3 | 4 | 12 | 6 | 8 |
品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有的把握认为“优城”和共享单车品牌有关?
(Ⅱ)若不考虑其它因素,为了拓展市场,对品牌要从这五个城市选择三个城市进行宣传.
(i)求城市2被选中的概率;
(ii)求在城市2被选中的条件下城市3也被选中的概率.
附:参考公式及数据
0.15 | 0.10 | 0.05 | 0.025 | 0.005 | 0.001 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |