题目内容

一数列{an}的前n项的平均数为n.
(1)求数列{an}的通项公式;
(2)设bn=
an
2n+1
,证明数列{bn}是递增数列;
(3)设f(x)=-
x2
3
+
4x
3
-
an
2n+1
,是否存在最大的数M?当x≤M时,对于一切非零自然数n,都有f(x)≤0.
分析:(1)利用平均数的意义和当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1即可得出;
(2)作差bn+1-bn,证明其大于0即可;
(3)利用(2)bn=
2n-1
2n+1
递增,因此有最小值
1
3
.解出f(x)=-
x2
3
+
4x
3
-
2n-1
2n+1
≤-
x2
3
+
4x
3
-
1
3
≤0
,即可知道是否存在最大的数M.
解答:解:(1)由题意可得n=
a1+a2+…+an
n
,∴Sn=n2
当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时也成立.故an=2n-1.
(2)作差bn+1-bn=
an+1
2n+3
-
an
2n+1
=
2n+1
2n+3
-
2n-1
2n+1
=
(2n+1)2-(2n-1)(2n+3)
(2n+1)(2n+3)
=
4
(2n+1)(2n+3)
>0

∴bn+1>bn对于任意正整数n都成立,因此数列{bn}是递增数列.
(3)∵bn=
2n-1
2n+1
递增,∴有最小值
1
3

f(x)=-
x2
3
+
4x
3
-
2n-1
2n+1
≤-
x2
3
+
4x
3
-
1
3
≤0
,解得x2-4x+1≥0,x≥2+
3
,或x≤2-
3

所以M=2-
3

存在最大的数M=2-
3
,当x≤M时,对于一切非零自然数n,都有f(x)≤0.
点评:熟练掌握数列的通项公式与其前n项和之间的关系、作差法比较数的大小、一元二次不等式的解法及其转化法等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网