题目内容
12.已知i为虚数单位,若x+1+(x2-4)i>0(x∈R),则x的值为2.分析 由x+1+(x2-4)i>0(x∈R),可得$\left\{\begin{array}{l}{{x}^{2}-4=0}\\{x+1>0}\end{array}\right.$,解得即可.
解答 解:∵x+1+(x2-4)i>0(x∈R),
∴$\left\{\begin{array}{l}{{x}^{2}-4=0}\\{x+1>0}\end{array}\right.$,解得x=2.
故答案为:2.
点评 本题考查了复数为实数的充要条件、不等式的解法,属于基础题.
练习册系列答案
相关题目
7.现有如下投资方案,一年后投资盈亏的情况如下:
(1)投资股市:
(2)购买基金:
(Ⅰ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于$\frac{4}{5}$,求p的取值范围;
(Ⅱ)丙要将家中闲置的20万元钱进行投资,决定在“投资股市”、“购买基金”,或“等额同时投资股市和购买基金”这三种方案中选择一种,已知$p=\frac{1}{2}$,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?(其中第三方案须考察两项获利之和的随机变量Z),给出结果并说明理由.
(1)投资股市:
投资结果 | 获利40% | 不赔不赚 | 亏损20% |
概 率 | $\frac{1}{2}$ | $\frac{1}{8}$ | $\frac{3}{8}$ |
投资结果 | 获利20% | 不赔不赚 | 亏损10% |
概 率 | p | $\frac{1}{3}$ | q |
(Ⅱ)丙要将家中闲置的20万元钱进行投资,决定在“投资股市”、“购买基金”,或“等额同时投资股市和购买基金”这三种方案中选择一种,已知$p=\frac{1}{2}$,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?(其中第三方案须考察两项获利之和的随机变量Z),给出结果并说明理由.