题目内容

函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
的图象上一个最高点的坐标为(
π
12
,3)
,与之相邻的一个最低点的坐标为(
12
,-1)

(1)求函数f(x)的解析式;
(2)求导函数f'(x)在区间[0,
π
2
]
上的最大、最小值.
分析:(1)先由最高点、最低点求出函数的周期,进而求出ω,再利用函数的最大值、最小值列方程组解得A、B,最后代入特殊点求φ,则求出函数f(x)的解析式;
(2)首先利用复合函数求导法则对函数f(x)求导,然后根据余弦函数的性质求f(x)的最值.
解答:解:(1)依题意,
T
2
=
12
-
π
12
=
π
2
,即T=π,故ω=
T
=2

A+B=3
-A+B=-1
,解得
A=2
B=1

(
π
12
,3)
代入f(x)=2sin(2x+φ)+1,得sin(
π
6
+φ)=1

|φ|<
π
2
,故φ=
π
3

所以,f(x)=2sin(2x+
π
3
)+1

(2)f′(x)=4cos(2x+
π
3
)

x∈[0,
π
2
]
,得2x+
π
3
∈[
π
3
3
]
,则cos(2x+
π
3
)∈[-1,
1
2
]

所以f′(x)=4cos(2x+
π
3
)∈[-4,2]

故f'(x)在区间[0,
π
2
]
上的最大值为2,最小值为-4.
点评:本题考查三角函数的图象和性质,同时考查待定系数法求函数解析式和三角复合函数求导等知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网