题目内容
【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份 | |||||
储蓄存款 (千亿元) |
为便于计算,工作人员将上表的数据进行了处理(令, ),得到下表:
时间 | |||||
储蓄存款 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出关于的回归方程;
(Ⅲ)用所求回归方程预测到年年底,该地储蓄存款额可达多少?
附:线性回归方程,其中, .
【答案】(1) ;(2) ;(2) 到年年底,该地储蓄存款额可达千亿元.
【解析】试题分析:(1)将数据代入回归直线方程的计算公式,计算得关于的回归直线方程;(2)就将代入(1),求得关于的回归直线方程;(3)将代入(2)可得存款的预测值为千亿元.
试题解析:(1), , , ,
, ,
∴.
(2), ,代入得到:
,即.
(3)∴,
∴预测到2020年年底,该地储蓄存款额可达15.6千亿元.
练习册系列答案
相关题目
【题目】随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了名男生、名女生进行为期一周的跟踪调查,调查结果如表所示:
平均每天使用手机超过小时 | 平均每天使用手机不超过小时 | 合计 | |
男生 | |||
女生 | |||
合计 |
(1)能否在犯错误的概率不超过的前提下认为学生使用手机的时间长短与性别有关?
(2)在这名女生中,调查小组发现共有人使用国产手机,在这人中,平均每天使用手机不超过小时的共有人.从平均每天使用手机超过小时的女生中任意选取人,求这人中使用非国产手机的人数的分布列和数学期望.
参考公式: