题目内容
【题目】已知函数.
(1)当,时,求满足的的值;
(2)若函数是定义在上的奇函数.
①存在,使得不等式有解,求实数的取值范围;
②若函数满足,若对任意且,不等式恒成立,求实数的最大值.
【答案】(1);(2)①;②.
【解析】分析:(1)把,代入,求解即可得答案.
(2)①函数是定义在上的奇函数,得,代入原函数求解得的值,判断函数为单调性,由函数的单调性可得的取值范围.
②由,求得函数,代入,化简后得恒成立,令,,参数分离得在时恒成立,由基本不等即可求得的最大值.
详解:解:(1)因为,,所以,
化简得,解得(舍)或,
所以.
(2)因为是奇函数,所以,所以,
化简变形得:,
要使上式对任意的成立,则且,
解得:或,因为的定义域是,所以舍去,
所以,,所以.
①
对任意,,有:,
因为,所以,所以,
因此在上递增,
因为,所以,
即在时有解,
当时,,所以.
②因为,所以,
所以,
不等式恒成立,即,
令,,则在时恒成立,
因为,由基本不等式可得:,当且仅当时,等号成立,
所以,则实数的最大值为.
奇偶性 | 单调性 | 转化不等式 |
奇函数 | 区间上单调递增 | |
区间上单调递减 | ||
偶函数 | 对称区间上左减右增 | |
对称区间上左增右减 |
练习册系列答案
相关题目