题目内容
【题目】如图所示,在三棱锥P–ABC中,PA⊥平面ABC,D是棱PB的中点,已知PA=BC=2,AB=4,CB⊥AB,则异面直线PC,AD所成角的余弦值为
A.B.C.D.
【答案】D
【解析】
因为PA⊥平面ABC,所以PA⊥AB,PA⊥BC.过点A作AE∥CB,又CB⊥AB,则AP,AB,AE两两垂直.如图,以A为坐标原点,分别以AB,AE,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,
则A(0,0,0),P(0,0,2),B(4,0,0),C(4,2,0).因为D为PB的中点,所以D(2,0,1).
故=(4,2,2),=(2,0,1).所以cos〈,〉===.
设异面直线PC,AD所成的角为θ,则cos θ=|cos〈,〉|=.
【题目】有一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表:
摄氏温度 | ||||||||
热饮杯数 |
(1)从散点图可以发现,各点散布在从左上角到右下角的区域里。因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少。统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量、,如果,那么负相关很强;如果,那么正相关很强;如果,那么相关性一般;如果,那么相关性较弱。请根据已知数据,判断气温与当天热饮销售杯数相关性的强弱.
(2)(i)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
(ii)记为不超过的最大整数,如,.对于(i)中求出的线性回归方程,将视为气温与当天热饮销售杯数的函数关系.已知气温与当天热饮每杯的销售利润的关系是 (单位:元),请问当气温为多少时,当天的热饮销售利润总额最大?
(参考公式),,
(参考数据),, .
,,,.
【题目】某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:
周一 | 无雨 | 无雨 | 有雨 | 有雨 |
周二 | 无雨 | 有雨 | 无雨 | 有雨 |
收益 | 万元 | 万元 | 万元 | 万元 |
若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为万元;有雨时,收益为万元.额外聘请工人的成本为万元.
已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为万元的概率为.
(Ⅰ)若不额外聘请工人,写出基地收益的分布列及基地的预期收益;
(Ⅱ)该基地是否应该外聘工人,请说明理由.