题目内容
已知则
=2,则a+b=
lim |
x→2 |
x2+ax+b |
x2-x-2 |
-6
-6
.分析:由
=2,知4+2a+b=0,所以
=2等价转化为
=
,由此能求出a+b.
lim |
x→2 |
x2+ax+b |
x2-x-2 |
lim |
x→2 |
x2+ax+b |
x2-x-2 |
lim |
x→2 |
x2+ax-2a-4 |
(x+1)(x-2) |
lim |
x→2 |
(x-2)(x+2+a) |
(x+1)(x-2) |
解答:解:∵
=2,
∴4+2a+b=0,
∴
=2能够转化为
=
=
=2,
∴
=2,
∴a=2,b=-8,
∴a+b=-6.
故答案为:-6.
lim |
x→2 |
x2+ax+b |
x2-x-2 |
∴4+2a+b=0,
∴
lim |
x→2 |
x2+ax+b |
x2-x-2 |
lim |
x→2 |
x2+ax-2a-4 |
(x+1)(x-2) |
=
lim |
x→2 |
(x-2)(x+2+a) |
(x+1)(x-2) |
=
lim |
x→2 |
x+2+a |
x+1 |
∴
4+a |
3 |
∴a=2,b=-8,
∴a+b=-6.
故答案为:-6.
点评:本题考查极限的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
已知,
=a,且函数y=alnx+
+c在(1,e)上具有单调性,则b的取值范围是( )
lim |
x→2 |
x2+cx+2 |
x-2 |
b |
x |
A、(-∞,1]∪[e,+∞] |
B、(-∞,0]∪[e,+∞] |
C、(-∞,e] |
D、[1,e] |