题目内容
【题目】△ABC中,a,b,c分别为内角A,B,C的对边,2asin A=(2b+c)sin B+(2c+b)sin C.
且sin B+sin C=1,则△ABC是( )
A. 等腰钝角三角形 B. 等腰直角三角形 C. 钝角三角形 D. 直角三角形
【答案】A
【解析】
先利用正弦定理余弦定理化简2asin A=(2b+c)sin B+(2c+b)sin C得A=120°,再利用三角恒等变换化简sin B+sin C=1得B=30°,C=30°,即得解.
由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.
由余弦定理得a2=b2+c2-2bccos A,故cos A=-,A=120°.
∴B+C=60°,则C=60°-B,
∴sin B+sin C=sin B+sin(60°-B)=sin B+cos B-sin B
=sin B+cos B=sin(B+60°)=1,
∴B=30°,C=30°.
∴△ABC是等腰的钝角三角形.
故答案为:A.
练习册系列答案
相关题目
【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:
x | 15.0 | 25.58 | 30.0 | 36.6 | 44.4 |
y | 39.4 | 42.9 | 42.9 | 43.1 | 49.2 |
(1)以x为解释变量,y为预报变量,作出散点图;
(2)求y与x之间的线性回归方程,对于基本苗数56.7预报其有效穗;
(3)计算各组残差,并计算残差平方和;
(4)求R2,并说明残差变量对有效穗的影响占百分之几.