题目内容
【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)写出圆的参数方程和直线的直角坐标方程;
(2)设点在上,点Q在上,求的最小值及此时点的直角坐标.
【答案】(1)圆的参数方程:,直线:;(2),此时点的坐标为
【解析】
(1)整理圆的方程为,即可写出参数方程,利用将直线方程写为直角坐标方程即可;
(2)法一:利用参数方程设曲线上的点,利用点到直线距离公式可得,则根据三角函数的性质求处最值,并将代回求得坐标;
法二:为圆心到直线距离减去半径,再利用弦与直线垂直的性质得所在直线为,联立直线与圆的方程即可求得交点的坐标
(1)圆的方程可化为,圆心为,半径为,
∴圆的参数方程为(为参数),
直线的极坐标方程可化为,
∵,∴直线的直角坐标方程为
(2)法一:设曲线上的点,
点到直线:的距离:
,
当时,,
此时点的坐标为,所以,此时点的坐标为
法二:曲线是以为圆心,半径为的圆,
圆心到直线的距离,
所以,
此时直线经过圆心,且与直线垂直,
,所以,所在直线方程为,即,
联立直线和圆的方程,解得或,
当取得最小值时,点的坐标为,
所以,此时点的坐标为
练习册系列答案
相关题目