题目内容
【题目】已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.
(1)证明:当取得最小值时,椭圆的离心率为.
(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在,
【解析】
(1)将点代入椭圆方程得到,结合基本不等式,求得取得最小值时,进而证得椭圆的离心率为.
(2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.根据上述分析判断出所求的圆存在,进而求得定圆的方程.
(1)证明:∵椭圆经过点,∴,
∴,
当且仅当,即时,等号成立,
此时椭圆的离心率.
(2)解:∵椭圆的焦距为2,∴,又,∴,.
当直线的斜率不存在时,由对称性,设,.
∵,在椭圆上,∴,∴,∴到直线的距离.
当直线的斜率存在时,设的方程为.
由,得,
.
设,,则,.
∵,∴,
∴,
∴,即,
∴到直线的距离.
综上,到直线的距离为定值,且定值为,故存在定圆:,使得圆与直线总相切.
练习册系列答案
相关题目
【题目】为认真贯彻落实党中央国务院决策部署,坚持“房子是用来住的,不是用来炒的”定位,坚持调控政策的连续性和稳定性,进一步稳定某省市商品住房市场,该市人民政府办公厅出台了相关文件来控制房价,并取得了一定效果,下表是2019年2月至6月以来该市某城区的房价均值数据:
(月份) | 2 | 3 | 4 | 5 | 6 |
(房价均价:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若变量、具有线性相关关系,求房价均价(千元/平方米)关于月份的线性回归方程;
(2)根据线性回归方程预测该市某城区7月份的房价.
(参考公式:用最小二乘法求线性回归方程的系数公式)