题目内容

【题目】已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x|x﹣2|.若关于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10个不同实数解,则a的取值范围为(
A.(0,2)
B.(﹣2,0)
C.(1,2)
D.(﹣2,﹣1)

【答案】D
【解析】解:设x<0,则﹣x>0,满足表达式f(x)=x|x﹣2|. ∴f(﹣x)=﹣x|﹣x﹣2|=﹣x|x+2|,
又∵f(x)为偶函数,∴f(﹣x)=f(x),
∴f(x)=﹣x|x+2|,
故当x<0时,f(x)=﹣x|x+2|.
则f(x)=
作出f(x)的图象如图:
设t=f(x),
由图象知,当t>1时,t=f(x)有两个根,
当t=1时,t=f(x)有四个根,
当0<t<1时,t=f(x)有六两个根,
当t=0时,t=f(x)有三个根,
当t<0时,t=f(x)有0个根,
则方程[f(x)]2+af(x)+b=0等价为t2+at+b=0,
若方程[f(x)]2+af(x)+b=0(a∈R)恰好有1个不同实数解,
等价为方程t2+at+b=0有两不同的根,
且0<t1<1,t2=1,
则t1+t2=﹣a,
即1<t1+t2<2,
则1<﹣a<2,
即﹣2<a<﹣1,
则a的取值范围为(﹣2,﹣1),
故选D.

【考点精析】利用函数奇偶性的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网