题目内容

【题目】在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;
(2)求AB边上的中线长的取值范围.

【答案】
(1)解:由sin2A+sin2B﹣sin2C=sinAsinB,利用正弦定理化简得:a2+b2﹣c2=ab,

∴cosC= = = ,即C=

∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A,

∴sinBcosA=2sinAcosA,

当cosA=0,即A= ,此时SABC=

当cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,此时此时SABC=


(2)∵ =

∴|CD|2= =

∵cosC= ,c=2,

∴由余弦定理得:c2=a2+b2﹣2abcosC,即a2+b2﹣ab=4,

∴|CD|2= = >1,且|CD|2= ≤3,

则|CD|的范围为(1, ].


【解析】(1)已知等式利用正弦定理化简,再利用余弦定理表示出cosC,将得出关系式代入求出cosC的值,确定出C的度数,sinC+sin(B﹣A)=2sin2A化简后,根据cosA为0与cosA不为0两种情况,分别求出三角形ABC面积即可;(2)根据CD为AB边上的中线,得到 = ,两边平方并利用平面向量的数量积运算法则变形得到关系式,利用余弦定理列出关系式,将cosC与c的值代入得到关系式,代入计算即可确定出|CD|的范围.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网