题目内容

9.已知点P为椭圆x2+2y2=98上一个动点,A(0,5),求|PA|的最值.

分析 可设P(7$\sqrt{2}$cosα,7sinα),0≤α<2π,A(0,5),即有|PA|=$\sqrt{(7\sqrt{2}cosα)^{2}+(7sinα-5)^{2}}$,再由同角的平方关系和正弦函数的值域,配方即可得到所求最值.

解答 解:点P为椭圆x2+2y2=98上一个动点,
可设P(7$\sqrt{2}$cosα,7sinα),0≤α<2π,
A(0,5),即有|PA|=$\sqrt{(7\sqrt{2}cosα)^{2}+(7sinα-5)^{2}}$
=$\sqrt{-49si{n}^{2}α-70sinα+123}$
=$\sqrt{-49(sinα+\frac{5}{7})^{2}+148}$,
由-1≤sinα≤1,可得sinα=-$\frac{5}{7}$时,|PA|取得最大值2$\sqrt{37}$;
当sinα=1,即α=$\frac{π}{2}$时,|PA|取得最小值2.

点评 本题考查椭圆的参数方程的运用,考查三角函数的化简和求值,注意运用同角的平方关系和正弦函数的值域,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网