题目内容

10.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,
(1)当x∈[1,2]时,求f(x)的解析式;
(2)计算f(0)+f(1)+f(2)+…+f(2015)的值.

分析 (1)根据函数的对称性,即可求出当x∈[1,2]时的f(x)的解析式;
(2)(根据函数的对称性和函数的奇偶性即可得到f(x)是周期函数,根据函数的周期性先计算f(0)+f(1)+f(2)+f(3)=0,然后可得f(0)+f(1)+f(2)+…+f(2015)的值.

解答 解:(1)∵f(x)的图象关于x=1对称,
∴f(1+x)=f(1-x),即f(x)=f(2-x)
当x∈[1,2]时,2-x∈[0,1],
∵当x∈[0,1]时,f(x)=2x-1
∴f(x)=f(2-x)=22-x-1,x∈[1,2].
(2)∵f(x)的图象关于x=1对称,
∴f(1+x)=f(1-x),
∵f(x)是R上的奇函数,
∴f(1+x)=f(1-x)=-f(x-1),
即f(2+x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即f(x)是周期为4的周期函数;
∵当x∈[0,1]时,f(x)=2x-1
∴f(0)=0,f(1)=2-1=1,f(2)=f(0)=0,f(3)=f(-1)=-f(1)=-1,f(4)=f(0)=0,
∴f(0)+f(1)+f(2)+f(3)=0,
即f(0)+f(1)+f(2)+…+f(2015)=504×0=0.

点评 本题考查的知识点是函数的值,奇函数,函数的周期性,其中根据已知条件求出函数是为4的周期函数,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网