题目内容

20.π为圆周率,e=2.71828为自然对数的底数.则3π,πe,3e,π3,e3,eπ这6个数中的最大值是3π

分析 构造函数f(x)=$\frac{lnx}{x}$,由导数性质得函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).由e<3<π,得ln3e<lnπe,lneπ<ln3π.从而3e<πe<π3,e3<eπ<3π,由函数f(x)=$\frac{lnx}{x}$的单调性质,得f(π)<f(3)<f(e),由此能求出3π,πe,3e,π3,e3,eπ这6个数中的最大值.

解答 解:函数f(x)=$\frac{lnx}{x}$的定义域为(0,+∞),
∵f(x)=$\frac{lnx}{x}$,∴f′(x)=$\frac{1-lnx}{{x}^{2}}$,
当f′(x)>0,即0<x<e时,函数f(x)单调递增;
当f′(x)<0,即x>e时,函数f(x)单调递减.
故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).
∵e<3<π,
∴eln3<elnπ,πlne<πln3,即ln3e<lnπe,lneπ<ln3π
于是根据函数y=lnx,y=ex,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π
故这六个数的最大数在π3与3π之中,
由e<3<π及函数f(x)=$\frac{lnx}{x}$的单调性质,得f(π)<f(3)<f(e),
即$\frac{lnπ}{π}$<$\frac{ln3}{3}$<$\frac{lne}{e}$,
由$\frac{lnπ}{π}$<$\frac{ln3}{3}$,得lnπ3<ln3π,∴3π>π3
3π,πe,3e,π3,e3,eπ这6个数中的最大值是3π
故答案为:3π

点评 本题考查利用导数研究函数的单调性及其应用、数值的大小比较,考查学生综合运用知识分析解决问题的能力,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网