题目内容
如图,在直三棱柱ABC—A1B1C1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.(1)求A1B与平面ABD所成角的余弦值;
(2)求点A1到平面AED的距离.
解析:(1)连结,则是在面ABD的射影,即∠A1BG是A1B与平面ABD所成的角.
如图所示建立坐标系,坐标原点为O.设=2a,则A(2a,0,0),B(0,2a,0),D(0,0,1),?A1(2a,0,2),E(a,a,1),G(,,).
∴=(,,),=(0,-2a,1).?
∴·=-a2+=0,解得a=1.
∴=(2,-2,2),=(,-,).?
∴cos∠A1BG===.
(2)由(1)有A(2,0,0),A1(2,0,2),E(1,1,1),D(0,0,1),
·=(-1,1,1)·(-1,-1,0)=0,?
·=(0,0,2)·(-1,-1,0)=0.
∴ED⊥平面AA1E.又ED平面AED,
∴平面AED⊥平面AA1E.
又面AED∩面AA1E=AE,
∴点A1在平面AED的射影K在上.
设=λ,则=+=(-λ,λ,λ-2).
由·=0,即λ+λ+λ-2=0,解得λ=.
∴=(-,,-).
∴||=.
故A1到平面AED的距离为.
练习册系列答案
相关题目