ÌâÄ¿ÄÚÈÝ
ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º
¡
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´ÔÀ´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©ÁbΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÊýÁÐ{an}ÊÇÕûÊýÊýÁУ¬½áºÏ2an-1£¼an-1+an+1£¼2an+1£¬¿ÉµÃ2an=an-1+an+1£¬¸ù¾ÝµÈ²îÊýÁеĶ¨Ò壬ÍƳö{an}ÊǵȲîÊýÁУ¬½ø¶øÇó³öÆäͨÏʽ£»
£¨2£©×Ðϸ¶ÁÌ⣬ÕÒµ½ÆäÑ»·¹æÂÉ£¬È·¶¨bnÊǵڼ¸¸öÑ»·Öеĵڼ¸ÐÐÖи÷ÊýÖ®ºÍÊǽâÌâµÄ¹Ø¼ü£®
£¨3£©ÓÉ£¨1£©£¨2£©µÄ½áÂÛ£¬Çó³öcnµÄ±í´ïʽ£¬ÀûÓõȱÈÊýÁеĶ¨Ò壬µÃµ½¹ØÓÚb¡¢nµÄ¹Øϵʽ£¬È»ºó·Ön=1£¬n=2£¬n¡Ý3·Ö±ðÌÖÂÛ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º½â£º£¨1£©ÒòΪÊýÁÐ{an}ÊÇÕûÊýÊýÁУ¬ËùÒÔanÊÇÕûÊý£¬
ËùÒÔ2an-1£¬an-1+an+1£¬2an+1¶¼ÊÇÕûÊý£®
ÓÖ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£¬
ËùÒÔ2an=an-1+an+1£¬
¼´ÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îd=a2-a1=1µÄµÈ²îÊýÁУ¬ËùÒÔan=n£®
£¨2£©Éèÿһ¸öÑ»·£¨4ÐУ©¼ÇΪһ×飬ÓÉÓÚÿһ¸öÑ»·º¬ÓÐ4ÐУ¬
¹Êb100ÊǵÚ25¸öÑ»·ÖеĵÚ4ÐÐÖи÷ÊýÖ®ºÍ£®
ÓÉÑ»··Ö×é¹æÂÉÖª£¬Ã¿¸öÑ»·¹²ÓÐ10Ï
¹ÊµÚ25¸öÑ»·ÖеĵÚ4ÐÐÄÚµÄ4¸öÊý·Ö±ðΪÊýÁÐ{an}ÖеĵÚ247ÏîÖÁµÚ250Ï
ÓÖan=n£®ËùÒÔb100=247+248+249+250=994£®
b5=a11=11£¬ËùÒÔb5+b100=11+994=1005£®
£¨3£©ÒòΪ£¬
ÉèÊýÁÐ{cn}ÖУ¬cn£¬cn+1£¬cn+2³ÉµÈ±ÈÊýÁУ¬¼´cn+12=cn•cn+2£¬
ËùÒÔ£¨2+nb+b+b•2n£©2=£¨2+nb+b•2n-1£©£¨2+nb+2b+b•2n+1£©
»¯¼òµÃb=2n+£¨n-2£©•b•2n-1£¨*£©
µ±n=1ʱ£¬b=1£¬µÈʽ£¨*£©³ÉÁ¢£¬¶øb¡Ý3£¬¹ÊµÈʽ£¨*£©²»³ÉÁ¢£»
µ±n=2ʱ£¬b=4£¬µÈʽ£¨*£©³ÉÁ¢£»
µ±n¡Ý3ʱ£¬b=2n+£¨n-2£©•b•2n-1£¾£¨n-2£©•b•2n-1¡Ý4b£¬ÕâÓëb¡Ý3ì¶Ü£¬¹ÊµÈʽ£¨*£©²»³ÉÁ¢£®
×ÛÉÏËùÊö£¬µ±b¡Ù4ʱ£¬ÊýÁÐ{cn}Öв»´æÔÚÁ¬ÐøÈýÏîµÈµÈ±ÈÊýÁУ»
µ±b=4ʱ£¬ÊýÁÐ{cn}ÖдæÔÚÁ¬ÐøÈýÏîµÈµÈ±ÈÊýÁУ¬ÕâÈýÏîÒÀ´ÎÊÇ18£¬30£¬50£®
µãÆÀ£º±¾ÌâÔÚÓ¦ÓõȲîÊýÁеĶ¨Ò塢ͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½µÄͬʱ£¬»¹¿¼²éÁËѧÉúµÄÂß¼ÍÆÀíÄÜÁ¦£¬ÔËËãÄÜÁ¦ÒÔ¼°¶Ô¹«Ê½µÄÁé»îÔËÓÃÄÜÁ¦£¬ÊÇÒ»µÀ×ÛºÏÐÔºÜÇ¿µÄÌâÄ¿£®
£¨2£©×Ðϸ¶ÁÌ⣬ÕÒµ½ÆäÑ»·¹æÂÉ£¬È·¶¨bnÊǵڼ¸¸öÑ»·Öеĵڼ¸ÐÐÖи÷ÊýÖ®ºÍÊǽâÌâµÄ¹Ø¼ü£®
£¨3£©ÓÉ£¨1£©£¨2£©µÄ½áÂÛ£¬Çó³öcnµÄ±í´ïʽ£¬ÀûÓõȱÈÊýÁеĶ¨Ò壬µÃµ½¹ØÓÚb¡¢nµÄ¹Øϵʽ£¬È»ºó·Ön=1£¬n=2£¬n¡Ý3·Ö±ðÌÖÂÛ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º½â£º£¨1£©ÒòΪÊýÁÐ{an}ÊÇÕûÊýÊýÁУ¬ËùÒÔanÊÇÕûÊý£¬
ËùÒÔ2an-1£¬an-1+an+1£¬2an+1¶¼ÊÇÕûÊý£®
ÓÖ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£¬
ËùÒÔ2an=an-1+an+1£¬
¼´ÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îd=a2-a1=1µÄµÈ²îÊýÁУ¬ËùÒÔan=n£®
£¨2£©Éèÿһ¸öÑ»·£¨4ÐУ©¼ÇΪһ×飬ÓÉÓÚÿһ¸öÑ»·º¬ÓÐ4ÐУ¬
¹Êb100ÊǵÚ25¸öÑ»·ÖеĵÚ4ÐÐÖи÷ÊýÖ®ºÍ£®
ÓÉÑ»··Ö×é¹æÂÉÖª£¬Ã¿¸öÑ»·¹²ÓÐ10Ï
¹ÊµÚ25¸öÑ»·ÖеĵÚ4ÐÐÄÚµÄ4¸öÊý·Ö±ðΪÊýÁÐ{an}ÖеĵÚ247ÏîÖÁµÚ250Ï
ÓÖan=n£®ËùÒÔb100=247+248+249+250=994£®
b5=a11=11£¬ËùÒÔb5+b100=11+994=1005£®
£¨3£©ÒòΪ£¬
ÉèÊýÁÐ{cn}ÖУ¬cn£¬cn+1£¬cn+2³ÉµÈ±ÈÊýÁУ¬¼´cn+12=cn•cn+2£¬
ËùÒÔ£¨2+nb+b+b•2n£©2=£¨2+nb+b•2n-1£©£¨2+nb+2b+b•2n+1£©
»¯¼òµÃb=2n+£¨n-2£©•b•2n-1£¨*£©
µ±n=1ʱ£¬b=1£¬µÈʽ£¨*£©³ÉÁ¢£¬¶øb¡Ý3£¬¹ÊµÈʽ£¨*£©²»³ÉÁ¢£»
µ±n=2ʱ£¬b=4£¬µÈʽ£¨*£©³ÉÁ¢£»
µ±n¡Ý3ʱ£¬b=2n+£¨n-2£©•b•2n-1£¾£¨n-2£©•b•2n-1¡Ý4b£¬ÕâÓëb¡Ý3ì¶Ü£¬¹ÊµÈʽ£¨*£©²»³ÉÁ¢£®
×ÛÉÏËùÊö£¬µ±b¡Ù4ʱ£¬ÊýÁÐ{cn}Öв»´æÔÚÁ¬ÐøÈýÏîµÈµÈ±ÈÊýÁУ»
µ±b=4ʱ£¬ÊýÁÐ{cn}ÖдæÔÚÁ¬ÐøÈýÏîµÈµÈ±ÈÊýÁУ¬ÕâÈýÏîÒÀ´ÎÊÇ18£¬30£¬50£®
µãÆÀ£º±¾ÌâÔÚÓ¦ÓõȲîÊýÁеĶ¨Ò塢ͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½µÄͬʱ£¬»¹¿¼²éÁËѧÉúµÄÂß¼ÍÆÀíÄÜÁ¦£¬ÔËËãÄÜÁ¦ÒÔ¼°¶Ô¹«Ê½µÄÁé»îÔËÓÃÄÜÁ¦£¬ÊÇÒ»µÀ×ÛºÏÐÔºÜÇ¿µÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿