题目内容

(本题满分15分)

已知偶函数满足:当时,,当时,

(1) 求当时,的表达式;

(2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。

(3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。

 

【答案】

 

(1)

(2)

(3)

时,

时,

时,符合题意

【解析】、解:(1)设

  又偶函数

    ………………………………………2分

(2)(Ⅰ)

(Ⅱ)时,都满足

综上,所以       ……………………………………2分 

  (3)零点交点4个且均匀分布

(Ⅰ)

  ……2分

(Ⅱ)时,

    …………………………………2分

所以 时,

(Ⅲ)时m=1时    …………………………………1分

(IV) 时,

此时

所以 (舍)

时,时存在  ………2分

综上:

时,

时,

时,符合题意………1分

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网