题目内容
已知函数f(x)=1 | 3 |
(Ⅰ)求a的值和切线l的方程;
(Ⅱ)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围.
分析:(1)由已知可得函数的导函数,即切线斜率的函数,因为在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直,所以导函数只有一个实根,进而易得a的值与切线1的方程.
(2)因为在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直,显然切线斜率≥-1从而可以解出θ的范围.
(2)因为在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直,显然切线斜率≥-1从而可以解出θ的范围.
解答:解:(Ⅰ)∵f(x)=
x2-2x2+ax,
∴f/(x)=x2-4x+a.(2分)
∵在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直,
∴x2-4x+a=-1有且只有一个实数根.
∴△=16-4(a+1)=0,
∴a=3.(4分)
∴x=2,f(2)=
.
∴切线l:y-
=-(x-2),即3x+3y-8=0.(7分)
(Ⅱ)∵f/(x)=x2-4x+3=(x-2)2-1≥-1.(9分)
∴tanθ≥-1,(10分)
∵θ∈[0,π),
∴θ∈[0,
)∪[
,π)(13分)
1 |
3 |
∴f/(x)=x2-4x+a.(2分)
∵在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直,
∴x2-4x+a=-1有且只有一个实数根.
∴△=16-4(a+1)=0,
∴a=3.(4分)
∴x=2,f(2)=
2 |
3 |
∴切线l:y-
2 |
3 |
(Ⅱ)∵f/(x)=x2-4x+3=(x-2)2-1≥-1.(9分)
∴tanθ≥-1,(10分)
∵θ∈[0,π),
∴θ∈[0,
π |
2 |
3π |
4 |
点评:本题考查了直线的点斜式方程及直线的倾斜角,是一道综合题,应注意运用导函数求解.
练习册系列答案
相关题目