题目内容
已知定义在[-3,3]上的函数![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_ST/0.png)
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.
【答案】分析:(1)求出函数的导数,研究函数f(x)在[-2,0]上的单调性,确定出最值的位置,求出最值及取得最值时的自变量;
(2)t≥6时,研究函数的单调性,求出函数在定义在[-3,3]上最大值,将此最值与8比较即可得出所要证明的结论成立与否
解答:解:(1)f'(x)=t-![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/0.png)
∵2≤t≤6∴![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/1.png)
当
时,即t=6时,f(x)在
上是增函数,
当
即2<t<6时,f(x)在
减,在
上增
∴f(x)在[-2,0]上最小值为
,此时x=-![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/13.png)
(2)由(1)可知f(x)在
上增,
当
即
时,f(x)在[-3,3]上最大值为f(3)=3t-
=27>8
当
即
时,f(x)在[0,3]上最大值为,
=8
又f(0)=0,
∴y=f(x)的图象上至少有一点在直线y=8上
点评:本题考查利用导数求闭区间上的最值,解题的关键是利用导数研究清楚函数的单调性,确定出最值取到的位置,求出最值,本题第二小题将图象在直线上方的问题转化为函数值的比较,解题时注意这一技巧的运用,本题运算量比较大,解题时要注意严谨运算,莫因为运算出错导致解题失败
(2)t≥6时,研究函数的单调性,求出函数在定义在[-3,3]上最大值,将此最值与8比较即可得出所要证明的结论成立与否
解答:解:(1)f'(x)=t-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/0.png)
∵2≤t≤6∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/1.png)
x | ![]() | -![]() | ![]() | ![]() | ![]() |
f'(x) | - | + | - | ||
f(x) | ↘ | 极小值 | ↗ | 极大值 | ↘ |
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/8.png)
当
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/9.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/10.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/11.png)
∴f(x)在[-2,0]上最小值为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/13.png)
(2)由(1)可知f(x)在
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/14.png)
当
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/15.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/17.png)
当
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/18.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/19.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174451248834418/SYS201311031744512488344023_DA/20.png)
又f(0)=0,
∴y=f(x)的图象上至少有一点在直线y=8上
点评:本题考查利用导数求闭区间上的最值,解题的关键是利用导数研究清楚函数的单调性,确定出最值取到的位置,求出最值,本题第二小题将图象在直线上方的问题转化为函数值的比较,解题时注意这一技巧的运用,本题运算量比较大,解题时要注意严谨运算,莫因为运算出错导致解题失败
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目