题目内容
【题目】如图,三棱锥中,侧面是边长为的正三角形,,平面平面,把平面沿旋转至平面的位置,记点旋转后对应的点为(不在平面内),、分别是、的中点.
(1)求证:;
(2)求三棱锥的体积的最大值.
【答案】(1)证明见解析;(2).
【解析】
(1)连接、,利用面面垂直的性质定理得出平面,可得出,利用勾股定理计算出,推导出是以为直角的直角三角形,再由中位线的性质得出,由此可得出;
(2)由的面积为定值,可知当平面平面时,三棱锥的体积最大,连接、,推导出平面,计算出、以及的面积,然后利用锥体的体积公式可求得结果.
(1)如图,连接、,
因为,是的中点,所以,
又平面平面,平面平面,平面,
所以平面,平面,所以.
因为为边长为的正三角形,所以,
又,所以由勾股定理可得,
又,,,
,则,,
所以为直角三角形,且,
又、分别是、的中点,所以,所以;
(2)如图,连接、,
因为三棱锥与三棱锥为同一个三棱锥,且的面积为定值,
所以当三棱锥的体积最大时,则平面平面,
,则,为的中点,则,
平面平面,平面平面,平面,
平面,
此时点到平面的距离为,
在中,因为,,所以,
所以的最大值为,
所以三棱锥的体积的最大值为.
练习册系列答案
相关题目