题目内容
【题目】若a,b在区间 上取值,则函数 在R上有两个相异极值点的概率是( )
A.
B.1-
C.
D.
【答案】C
【解析】解:易得f′(x)=ax2+2bx+ a,
函数f(x)在R上有两个相异极值点的充要条件:
是a≠0且其导函数的判别式大于0,即a≠0且4b2﹣a2>0,
又a,b在区间[0, ]上取值,则a>0,b> a,
点(a,b)满足的区域如图中阴影部分所示,
其中正方形区域的面积为3,
阴影部分的面积为3﹣ = ,
故所求的概率p= = ,
故选:C.
【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
练习册系列答案
相关题目
【题目】某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如下图:
甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在内的概率;
(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。
甲校 | 乙校 | 总计 | |
优秀 | |||
不优秀 | |||
总计 |
参考数据 | P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | span>3.841 | 5.024 | 6.635 | 7.879 | 10.828 |