题目内容
【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(6﹣m)﹣f(m)﹣18+6m≥0,则实数m的取值范围为( )
A.[﹣3,3]
B.[3,+∞)
C.[2,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
【答案】B
【解析】解:令g(x)=f(x)﹣ x2 , ∵g(x)+g(﹣x)=f(x)﹣ x2+f(﹣x)﹣ x2=0,
∴函数g(x)为奇函数
∵x∈(0,+∞)时,g′(x)=f′(x)﹣x<0,
函数g(x)在x∈(0,+∞)为减函数,
又由题可知,f(0)=0,g(0)=0,
所以函数g(x)在R上为减函数
∴f(6﹣m)﹣f(m)﹣18+6m
=f(6﹣m)+ (6﹣m)2﹣f(m)﹣ m2﹣18+6m≥0,
即g(6﹣m)﹣g(m)≥0,
∴g(6﹣m)≥g(m),
∴6﹣m≤m,
∴m≥3.
练习册系列答案
相关题目