题目内容
【题目】已知函数f(x)=ex+e﹣x , 其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围.
【答案】证明:(1)∵f(x)=ex+e﹣x ,
∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;
(2)解:若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,
即m(ex+e﹣x﹣1)≤e﹣x﹣1,
∵x>0,
∴ex+e﹣x﹣1>0,
即m≤在(0,+∞)上恒成立,
设t=ex , (t>1),则m≤在(1,+∞)上恒成立,
∵=﹣=﹣≥﹣,当且仅当t=2时等号成立,
∴m≤﹣.
【解析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;
(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围.
练习册系列答案
相关题目