ÌâÄ¿ÄÚÈÝ
3£®Éè²»µÈʽ×é$\left\{\begin{array}{l}{0¡Üx¡Ü6}\\{0¡Üy¡Ü6}\end{array}\right.$±íʾµÄÇøÓòΪA£¬²»µÈʽ×é$\left\{\begin{array}{l}{2x+y-6¡Ý0}\\{2x-3y¡Ý0}\end{array}\right.$±íʾµÄÇøÓòΪB£®£¨1£©ÔÚÇøÓòAÖÐÈÎÈ¡Ò»µã£¨x£¬y£©£¬Çóµã£¨x£¬y£©£¬Çóµã£¨x£¬y£©¡ÊBµÄ¸ÅÂÊ£»
£¨2£©Èôx£¬y·Ö±ð±íʾ¼×ÒÒÁ½È˸÷ÖÀÒ»´Î÷»×ÓËùµÃµÄµãÊý£¬Çóµã£¨x£¬y£©ÔÚÇøÓòBÖеĸÅÂÊ£®
·ÖÎö £¨1£©Çó³öÇøÓòAµÄÃæ»ýºÍÇøÓòBµÄÃæ»ý£¬´úÈ뼸ºÎ¸ÅÐ͸ÅÂʼÆË㹫ʽ£¬¿ÉµÃ´ð°¸£®
£¨2£©Çó³ö¼×¡¢ÒÒÁ½È˸÷ÖÀÒ»´Î÷»×ÓËùµÃµÄµãÊýµÄËùÓÐÇé¿ö£¬¼°Âú×ãµã£¨x£¬y£©ÔÚÇøÓòBÖеÄÇé¿ö£¬´úÈë¹Åµä¸ÅÐ͸ÅÂʼÆË㹫ʽ£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÉèÇøÓòAÖеĵ㣨x£¬y£©¡ÊBΪʼþM£¬¡£¨1·Ö£©
µã£¨x£¬y£©ÂäÔÚÇøÓòÄÚÈÎÒ»µãÊǵȿÉÄܵġ£¨2·Ö£©
¡ß²»µÈʽ×é$\left\{\begin{array}{l}0¡Üx¡Ü6\\ 0¡Üy¡Ü6\end{array}\right.$±íʾÇøÓòA£¬
¡àÇøÓòAµÄÃæ»ýΪS1=36£¬
ÓÖ¡ß²»µÈʽ×é$\left\{\begin{array}{l}2x+y-6¡Ý0\\ 2x-3y¡Ý0\\ 0¡Üx¡Ü6\\ 0¡Üy¡Ü6\end{array}\right.$±íʾµÄÇøÓòΪÇøÓòAÖÐÈÎÈ¡Ò»µã£¨x£¬y£©¡ÊB£®
¡àÇøÓòBµÄÃæ»ýΪS2=$\frac{1}{2}¡Á6¡Á4$-$\frac{1}{2}$¡Á3¡Á$\frac{3}{2}$=$\frac{39}{4}$£¬¡£¨4·Ö£©
¡àP£¨M£©=$\frac{\frac{39}{4}}{36}$=$\frac{13}{48}$£®¡£¨6·Ö£©
´ð£ºµã£¨x£¬y£©¡ÊBµÄ¸ÅÂÊΪ$\frac{13}{48}$¡£¨7·Ö£©
£¨2£©Éèµã£¨x£¬y£©ÔÚÇøÓòBΪʼþN£¬µã£¨x£¬y£©ÂäÔÚÇøÓòÄÚÈÎÒ»µãÊǵȿÉÄܵġ£¨8·Ö£©
¼×¡¢ÒÒÁ½È˸÷ÖÀÒ»´Î÷»×ÓËùµÃµÄµã£¨x£¬y£©µÄ¸öÊýΪ36¸ö£¬¡£¨9·Ö£©
ÆäÖÐÔÚÇøÓòBÖеĵ㣨x£¬y£©ÓУ¨3£¬1£©£¬£¨3£¬2£©£¬
£¨4£¬1£©£¬£¨4£¬2£©£¬£¨5£¬1£©£¬£¨5£¬2£©£¬£¨5£¬3£©£¬£¨6£¬1£©£¬£¨6£¬2£©£¬£¨6£¬3£©£¬£¨6£¬4£©¹²11¸ö£¬¡£¨12·Ö£©
¹ÊP£¨N£©=$\frac{11}{36}$£¬
´ð£ºµã£¨x£¬y£©ÔÚÇøÓòBÖеĸÅÂÊΪ$\frac{11}{36}$¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǹŵä¸ÅÐͺͼ¸ºÎ¸ÅÐ͸ÅÂʼÆË㹫ʽ£¬ÆäÖÐÊìÁ·ÕÆÎÕÀûÓùŵä¸ÅÐͺͼ¸ºÎ¸ÅÐ͸ÅÂʼÆË㹫ʽÇó¸ÅÂʵIJ½Ö裬Êǽâ´ðµÄ¹Ø¼ü£®
A£® | x-$\frac{3}{x}$¡Ü4 | B£® | |x-2|¡Ü$\sqrt{7}$ | C£® | x-4$\sqrt{x}$-3¡Ü0 | D£® | x4-4x2-3¡Ü0 |
ÄêÁä/Ëê | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ºÏ¼Æ |
ÈËÊý | 8 | 40 | 231 | 315 | 280 | 107 | 13 | 6 | 1000 |
£¨1£©ÄêÁä´óÓÚ18ËêµÄ¸ÅÂÊ£»
£¨2£©ÄêÁä²»µÍÓÚ15ËêµÄ¸ÅÂÊ£®