ÌâÄ¿ÄÚÈÝ
¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôsinBcosC£¾-cosBsinC£¬Ôò¡÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ»
¢ÚÈôsin2A+sin2B=sin2C£¬Ôò¡÷ABCÒ»¶¨ÊÇÖ±½ÇÈý½ÇÐΣ»
¢ÛÈôbcosA=acosB£¬Ôò¡÷ABCΪµÈÑüÈý½ÇÐΣ»
¢ÜÔÚ¡÷ABCÖУ¬ÈôA£¾B£¬ÔòsinA£¾sinB£»
¢ÝÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬ÔòsinA£¼cosB£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢ÙÈôsinBcosC£¾-cosBsinC£¬Ôò¡÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ»
¢ÚÈôsin2A+sin2B=sin2C£¬Ôò¡÷ABCÒ»¶¨ÊÇÖ±½ÇÈý½ÇÐΣ»
¢ÛÈôbcosA=acosB£¬Ôò¡÷ABCΪµÈÑüÈý½ÇÐΣ»
¢ÜÔÚ¡÷ABCÖУ¬ÈôA£¾B£¬ÔòsinA£¾sinB£»
¢ÝÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬ÔòsinA£¼cosB£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
£®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©·ÖÎö£º¢Ù°ÑÒÑÖªÌõ¼þ±äÐÎÖ»Äܵõ½0£¼B+C£¼¦ÐÍƲ»³öÊǶ۽ÇÈý½ÇÐΣ»
¢ÚÀûÓÃÕýÏÒ¶¨Àí»¯½ÇΪ±ß¿ÉµÃa2+b2=c2£¬´Ó¶øÅж¨Èý½ÇÐεÄÐÎ×´
¢ÛÀûÓÃÕýÏÒ¶¨Àí»¯±ßΪ½ÇÕûÀí¿ÉµÃsin£¨B-A£©=0£¬¼´¿ÉµÃ³ö½áÂÛ
¢ÜÏȸù¾Ý´ó½Ç¶Ô´ó±ßµÃµ½a£¾b£¬ÔÙ½áºÏÕýÏÒ¶¨Àí»¯±ßΪ½Ç¼´¿ÉµÃµ½½áÂÛ£®
¢ÝÖ±½Ó¸ù¾Ý¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬µÃµ½A+B£¾
⇒
£¾A£¾
-B⇒sinA£¾sin£¨
-B£©¼´¿É£®
¢ÚÀûÓÃÕýÏÒ¶¨Àí»¯½ÇΪ±ß¿ÉµÃa2+b2=c2£¬´Ó¶øÅж¨Èý½ÇÐεÄÐÎ×´
¢ÛÀûÓÃÕýÏÒ¶¨Àí»¯±ßΪ½ÇÕûÀí¿ÉµÃsin£¨B-A£©=0£¬¼´¿ÉµÃ³ö½áÂÛ
¢ÜÏȸù¾Ý´ó½Ç¶Ô´ó±ßµÃµ½a£¾b£¬ÔÙ½áºÏÕýÏÒ¶¨Àí»¯±ßΪ½Ç¼´¿ÉµÃµ½½áÂÛ£®
¢ÝÖ±½Ó¸ù¾Ý¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬µÃµ½A+B£¾
¦Ð |
2 |
¦Ð |
2 |
¦Ð |
2 |
¦Ð |
2 |
½â´ð£º½â£º¢ÙÈôsinBcosC£¾-cosBsinC⇒sinBcosC+cosBsinC=sin£¨B+C£©£¾0⇒0£¼B+C£¼¦Ð£¬ËùÒÔ¢Ù²»Ò»¶¨³ÉÁ¢£»
¢Ú¡ßsinA=
£¬sinB=
£¬sinC=
£¬¡à
+
=
£¬¼´a2+b2=c2£¬¡à¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ¬¢Ú³ÉÁ¢£¬
¢ÛÈôbcosA=acosB⇒2rsinBcosA=2rsinAcosB⇒sin£¨B-A£©=0⇒A=B¼´¢Û³ÉÁ¢£®
¢ÜÔÚ¡÷ABCÖУ¬ÈôA£¾B⇒a£¾b⇒2rsinA£¾2rsinB⇒sinA£¾sinB¼´¢Ü³ÉÁ¢£»
¢ÝÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬A+B£¾
⇒
£¾A£¾
-B⇒sinA£¾sin£¨
-B£©=cosB¼´¢Ý²»³ÉÁ¢£®
¹ÊÕýÈ·ÃüÌâµÄÊǢڢۢܣ®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
¢Ú¡ßsinA=
a |
2r |
b |
2r |
c |
2r |
a2 |
4r 2 |
b2 |
4r 2 |
c2 |
4r 2 |
¢ÛÈôbcosA=acosB⇒2rsinBcosA=2rsinAcosB⇒sin£¨B-A£©=0⇒A=B¼´¢Û³ÉÁ¢£®
¢ÜÔÚ¡÷ABCÖУ¬ÈôA£¾B⇒a£¾b⇒2rsinA£¾2rsinB⇒sinA£¾sinB¼´¢Ü³ÉÁ¢£»
¢ÝÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬A+B£¾
¦Ð |
2 |
¦Ð |
2 |
¦Ð |
2 |
¦Ð |
2 |
¹ÊÕýÈ·ÃüÌâµÄÊǢڢۢܣ®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
µãÆÀ£º±¾ÌâÊǶÔÈý½ÇÐÎÐÎ×´µÄÅжϣ®½â¾ö¢Ú¢Û¢ÜµÄ¹Ø¼üÔÚÓÚ¶ÔÕýÏÒ¶¨ÀíµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣬µ«Ò²ÊÇÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿