题目内容

如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,.
(1)当时,求的大小;
(2)求的面积S的最小值及使得S取最小值时的值.

(1)θ=60°;(2)当θ=45°时,S取最小值.

解析试题分析:本题主要考查正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在中,,①,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到①式中,再利用两角和的正弦公式展开,解出,利用特殊角的三角函数值求角;第二问,将第一问得到的DF和DE代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定S的最小值.
在△BDE中,由正弦定理得
在△ADF中,由正弦定理得.   4分
由tan∠DEF=,得,整理得
所以θ=60°.             6分
(2)S=DE·DF=
.  10分
当θ=45°时,S取最小值.     12分
考点:正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网