ÌâÄ¿ÄÚÈÝ
ÒÑÖªÔ²OµÄ·½³ÌΪx2+y2=1ºÍµãA£¨a£¬0£©£¬ÉèÔ²OÓëxÖá½»ÓÚP¡¢QÁ½µã£¬MÊÇÔ²OOÉÏÒìÓÚP¡¢QµÄÈÎÒâÒ»µã£¬¹ýµãA£¨a£¬0£©ÇÒÓëxÖá´¹Ö±µÄÖ±ÏßΪl£¬Ö±ÏßPM½»Ö±ÏßlÓÚµãE£¬Ö±ÏßQM½»Ö±ÏßlÓÚµãF£®
£¨1£©Èôa=3£¬Ö±Ïßl1¹ýµãA£¨3£¬0£©£¬ÇÒÓëÔ²OÏàÇУ¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©Ö¤Ã÷£ºÈôa=3£¬ÔòÒÔEFΪֱ¾¶µÄÔ²C×ܹý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£»
£¨3£©ÈôÒÔEFΪֱ¾¶µÄÔ²C¹ý¶¨µã£¬Ì½ÇóaµÄÈ¡Öµ·¶Î§£®
£¨1£©Èôa=3£¬Ö±Ïßl1¹ýµãA£¨3£¬0£©£¬ÇÒÓëÔ²OÏàÇУ¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©Ö¤Ã÷£ºÈôa=3£¬ÔòÒÔEFΪֱ¾¶µÄÔ²C×ܹý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£»
£¨3£©ÈôÒÔEFΪֱ¾¶µÄÔ²C¹ý¶¨µã£¬Ì½ÇóaµÄÈ¡Öµ·¶Î§£®
£¨1£©¡ßÖ±Ïßl1¹ýµãA£¨3£¬0£©£¬ÇÒÓëÔ²C£ºx2+y2=1ÏàÇУ¬
ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x-3£©£¬¼´kx-y-3k=0£¬
ÔòÔ²ÐÄO£¨0£¬0£©µ½Ö±Ïßl1µÄ¾àÀëΪd=
=1£¬½âµÃk=¡À
£¬
¡àÖ±Ïßl1µÄ·½³ÌΪy=¡À
£¨x-3£©£¬¼´y=¡À
£¨x-3£©£®
£¨2£©¶ÔÓÚÔ²·½³Ìx2+y2=1£¬Áîy=0£¬µÃx=¡À1£¬¼´P£¨-1£¬0£©£¬Q£¨1£¬0£©£®
ÓÖÖ±Ïßl2¹ýµãaÇÒÓëxÖá´¹Ö±£¬¡àÖ±Ïßl2·½³ÌΪx=3£¬ÉèM£¨s£¬t£©£¬ÔòÖ±ÏßPM·½³ÌΪy=
£¨x+1£©£®
½â·½³Ì×é
£¬µÃP¡ä(3£¬
)ͬÀí¿ÉµÃ£¬Q¡ä(3£¬
)
¡àÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C¡äµÄ·½³ÌΪ£¨x-3£©£¨x-3£©+£¨y-
£©£¨y-
£©=0£¬
ÓÖs2+t2=1£¬¡àÕûÀíµÃ(x2+y2-6x+1)+
y=0£¬
ÈôÔ²C¡ä¾¹ý¶¨µã£¬Ö»ÐèÁîy=0£¬´Ó¶øÓÐx2-6x+1=0£¬½âµÃx=3¡À2
£¬
¡àÔ²C¡ä×ܾ¹ý¶¨µã×ø±êΪ£¨3¡À2
£¬0£©£®
£¨3£©ÒÔEFΪֱ¾¶µÄÔ²C¹ý¶¨µã£¬ËüµÄÄæÃüÌ⣺ÉèÔ²OÓëxÖá½»ÓÚP¡¢QÁ½µã£¬MÊÇÔ²OÉÏÒìÓÚP¡¢QµÄÈÎÒâÒ»µã£¬
¹ýµãM£¨m£¬0£©ÇÒÓëxÖá´¹Ö±µÄÖ±ÏßΪl2£¬Ö±ÏßPM½»Ö±Ïßl2ÓÚµãP¡ä£¬
Ö±ÏßQM½»Ö±Ïßl2ÓÚµãQ¡ä£¬ÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C×ܹý¶¨µã£¬Ôòm£¾1»òÕßm£¼-1£®
ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x-3£©£¬¼´kx-y-3k=0£¬
ÔòÔ²ÐÄO£¨0£¬0£©µ½Ö±Ïßl1µÄ¾àÀëΪd=
|3k| | ||
|
| ||
4 |
¡àÖ±Ïßl1µÄ·½³ÌΪy=¡À
| ||
4 |
| ||
4 |
£¨2£©¶ÔÓÚÔ²·½³Ìx2+y2=1£¬Áîy=0£¬µÃx=¡À1£¬¼´P£¨-1£¬0£©£¬Q£¨1£¬0£©£®
ÓÖÖ±Ïßl2¹ýµãaÇÒÓëxÖá´¹Ö±£¬¡àÖ±Ïßl2·½³ÌΪx=3£¬ÉèM£¨s£¬t£©£¬ÔòÖ±ÏßPM·½³ÌΪy=
t |
s+1 |
½â·½³Ì×é
|
4t |
s+1 |
2t |
s-1 |
¡àÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C¡äµÄ·½³ÌΪ£¨x-3£©£¨x-3£©+£¨y-
4t |
s+1 |
2t |
s-1 |
ÓÖs2+t2=1£¬¡àÕûÀíµÃ(x2+y2-6x+1)+
6s-2 |
t |
ÈôÔ²C¡ä¾¹ý¶¨µã£¬Ö»ÐèÁîy=0£¬´Ó¶øÓÐx2-6x+1=0£¬½âµÃx=3¡À2
2 |
¡àÔ²C¡ä×ܾ¹ý¶¨µã×ø±êΪ£¨3¡À2
2 |
£¨3£©ÒÔEFΪֱ¾¶µÄÔ²C¹ý¶¨µã£¬ËüµÄÄæÃüÌ⣺ÉèÔ²OÓëxÖá½»ÓÚP¡¢QÁ½µã£¬MÊÇÔ²OÉÏÒìÓÚP¡¢QµÄÈÎÒâÒ»µã£¬
¹ýµãM£¨m£¬0£©ÇÒÓëxÖá´¹Ö±µÄÖ±ÏßΪl2£¬Ö±ÏßPM½»Ö±Ïßl2ÓÚµãP¡ä£¬
Ö±ÏßQM½»Ö±Ïßl2ÓÚµãQ¡ä£¬ÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C×ܹý¶¨µã£¬Ôòm£¾1»òÕßm£¼-1£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿