题目内容

已知圆O的方程为x2+y2=2,圆M的方程为(x-1)2+(y-3)2=1,过圆M上任一点P作圆O的切线PA,若直线PA与圆M的另一个交点为Q,则当弦PQ的长度最大时,直线PA的斜率是
 
分析:由题意得,弦PQ的长度最大为圆M的直径,用点斜式设出直线PA的方程,根据直线PA和圆O相切,圆心O到直线PA的
距离等于圆O的半径,求出PA的斜率k,即得直线PA的方程.
解答:解:当直线PA过圆M的圆心M(1,3)时,弦PQ的长度最大为圆M的直径.设直线PA的斜率为k,
由点斜式求得直线PA的方程为 y-3=k(x-1),即 kx-y+3-k=0.
由直线PA和圆O相切得 
2
=
|0-0+3-k|
k2+1
,∴k=1或 k=-7,
故答案为:1或-7.
点评:本题考查直线和圆的位置关系,点到直线的距离公式的应用,判断弦PQ的长度最大为圆M的直径是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网