题目内容

已知圆O的方程为x2+y2=2,PA,PB为该圆的两条切线,A,B为两切点,则
PA
PB
的最小值为(  )
分析:利用圆切线的性质:与圆心切点连线垂直;设出一个角,通过解直角三角形求出PA,PB的长;利用向量的数量积公式表示出
PA
PB
,利用三角函数的二倍角公式化简函数,
通过换元,再利用基本不等式求出最值.
解答:解:设PA与PO的夹角为a,则|PA|=|PB|=
2
tanα

设y=
PA
PB
=|PA|•|PB|cos2α=
2
tan2α
•cos2α=
cos2α
sin2α
•2cos2α=
1+cos2α
1-cos2α
•2cos2α.
记cos2α=u,.则y=2
u(u+1)
1-u
=2×[(-u-2)+
2
1-u
]=2×[-3+(1-u)+
2
1-u
2
]≥2(-3+2
2
),
PA
PB
的最小值为-6+4
2

故选A.
点评:本题考查圆切线的性质、三角函数的二倍角公式、向量的数量积公式、基本不等式求函数的最值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网