题目内容
(13分) 已知等比数列{an}中,a2=2,a5=128.
(1) 求通项an;
(2) 若bn = log2an,数列{bn}的前n项和为Sn,且Sn = 360,求n的值.
(1) 求通项an;
(2) 若bn = log2an,数列{bn}的前n项和为Sn,且Sn = 360,求n的值.
(1) an=a2·qn—2=2·4n—2=22n—3 ;(2) n=20为所求
本试题主要是考查了数列的概念和数列求和的综合运用。
(1)根据等比数列{an}中,首项和公比来表示已知中a2=2,a5=128.,,得到通项公式。
(2)结合上一问的结论,bn=log222n-3=2n-3,然后利用等差数列求和得到结论。
解:(1) 设公比为q,由a2=2,a5=128及a5=a2q3得 128=2q3,
∴q=4 ∴an=a2·qn—2=2·4n—2=22n—3 ····················· 6分
(2) bn=log222n-3=2n-3 ·························· 8分
∴数列{bn}是以-1为首项,2为公差的等差数列
∴Sn=n (-1)+=n2-2n ····················· 11分
令n2-2n=360得n1=20,n2=-18(舍)
故n=20为所求 ······························ 13分
(1)根据等比数列{an}中,首项和公比来表示已知中a2=2,a5=128.,,得到通项公式。
(2)结合上一问的结论,bn=log222n-3=2n-3,然后利用等差数列求和得到结论。
解:(1) 设公比为q,由a2=2,a5=128及a5=a2q3得 128=2q3,
∴q=4 ∴an=a2·qn—2=2·4n—2=22n—3 ····················· 6分
(2) bn=log222n-3=2n-3 ·························· 8分
∴数列{bn}是以-1为首项,2为公差的等差数列
∴Sn=n (-1)+=n2-2n ····················· 11分
令n2-2n=360得n1=20,n2=-18(舍)
故n=20为所求 ······························ 13分
练习册系列答案
相关题目