题目内容
【题目】在四棱锥中,底面为正方形,.
(1)证明:面⊥面;
(2)若与底面所成的角为, ,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)要证面面垂直,一般先证线面垂直,设AC与BD交点为O,则PO⊥BD,而正方形中AC⊥BD,于是可证得结论.
(2)由线面角的定义可得,以A为坐标原点,为x,y轴的正方向建立空间直角坐标系,然后写出各点坐标,求出面BPC和面DPC的法向量,再由法向量的夹角的余弦值得二面角的余弦.
(1)证明:连接AC,BD交点为O,∵四边形ABCD为正方形,∴
∵,,∴,又∵,∴
又,∴.
(2)∵,过点P做,垂足为E
∴∵PA与底面ABCD所成的角为,∴,
又,设,则
如图所示,以A为坐标原点,为x,y轴的正方向建立空间直角坐标系
设面法向量为,
,∴,
,∴
同理的法向量,
∴求二面角的余弦值
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
A1 | 上一个年度未发生有责任道路交通事故 | 下浮10% |
A2 | 上两个年度未发生有责任道路交通事故 | 下浮20% |
A3 | 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
A4 | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
A5 | 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
A6 | 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | A1 | A2 | A3 | A4 | A5 | A6 |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.且各种投保类型的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.