题目内容
20.已知g(x)=2-3x,f(g(x))=$\frac{3x}{{x}^{2}-1}$.则f($\frac{1}{2}$)=-2.分析 令g(x)=2-3x=$\frac{1}{2}$,求出x值,代入f(g(x))=$\frac{3x}{{x}^{2}-1}$可得答案.
解答 解:∵g(x)=2-3x,f(g(x))=$\frac{3x}{{x}^{2}-1}$.
令g(x)=2-3x=$\frac{1}{2}$,
解x=$\frac{1}{2}$,
∴f($\frac{1}{2}$)=$\frac{3×\frac{1}{2}}{{(\frac{1}{2})}^{2}-1}$=-2,
故答案为:-2
点评 本题考查的知识点是函数的值,难度不大,属于基础题.
练习册系列答案
相关题目
11.函数y=|x-3|-|x+1|的( )
A. | 最小值是0,最大值是4 | B. | 最小值是-4,最大值是0 | ||
C. | 最小值是-4,最大值是4 | D. | 没有最大值也没有最小值 |
8.下列说法正确的是( )
A. | 两两相交的三条直线确定一个平面 | B. | 四边形确定一个平面 | ||
C. | 梯形可以确定一个平面 | D. | 圆心和圆上两点确定一个平面 |