题目内容
3.如图已知四边形AOCB中,|$\overrightarrow{OA}$|=5,$\overrightarrow{OC}$=(5,0),点B位于第一象限,若△BOC为正三角形.(1)若cos∠AOB=$\frac{3}{5}$,求A点坐标;
(2)记向量$\overrightarrow{OA}$与$\overrightarrow{BC}$的夹角为θ,求cos2θ的值.
分析 (1)设∠AOB=α,cosα=$\frac{3}{5}$,sinα=$\frac{4}{5}$.可得:xA=$5cos(α+\frac{π}{3})$,yA=$5sin(α+\frac{π}{3})$.
(2)B$(\frac{5}{2},\frac{5\sqrt{3}}{2})$,计算$\overrightarrow{OA}•\overrightarrow{BC}$.$|\overrightarrow{OA}|$,$|\overrightarrow{BC}|$.可得cosθ=$\frac{\overrightarrow{OA}•\overrightarrow{BC}}{|\overrightarrow{OA}||\overrightarrow{BC}|}$.
解答 解:(1)设∠AOB=α,cosα=$\frac{3}{5}$,sinα=$\frac{4}{5}$.
xA=$5cos(α+\frac{π}{3})$=$5(\frac{3}{5}×\frac{1}{2}-\frac{4}{5}×\frac{\sqrt{3}}{2})$=$\frac{3-4\sqrt{3}}{2}$.
yA=$5sin(α+\frac{π}{3})$=5$(\frac{4}{5}×\frac{1}{2}+\frac{3}{5}×\frac{\sqrt{3}}{2})$=$\frac{4+3\sqrt{3}}{2}$.
∴A$(\frac{3-4\sqrt{3}}{2},\frac{4+3\sqrt{3}}{2})$.
(2)B$(\frac{5}{2},\frac{5\sqrt{3}}{2})$,
$\overrightarrow{BC}$=$(\frac{5}{2},-\frac{5\sqrt{3}}{2})$.
$\overrightarrow{OA}$=$(\frac{3-4\sqrt{3}}{2},\frac{4+3\sqrt{3}}{2})$.
∴$\overrightarrow{OA}•\overrightarrow{BC}$=$\frac{15-20\sqrt{3}}{4}$-$\frac{20\sqrt{3}+45}{4}$=$-\frac{15+20\sqrt{3}}{2}$.
$|\overrightarrow{OA}|$=5,$|\overrightarrow{BC}|$=5.
∴cosθ=$\frac{\overrightarrow{OA}•\overrightarrow{BC}}{|\overrightarrow{OA}||\overrightarrow{BC}|}$=$-\frac{3+4\sqrt{3}}{10}$.
∴cos2θ=2cos2θ-1=$\frac{7+24\sqrt{3}}{50}$.
点评 本题考查了向量的坐标运算、数量积运算性质、向量夹角公式,考查了推理能力与计算能力,属于中档题.
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
A. | 6 | B. | 27 | C. | 124 | D. | 604 |