题目内容

若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=________.

-6
分析:根据函数f(x)=|2x+a|关于直线对称,单调递增区间是[3,+∞),可建立方程,即可求得a的值.
解答:∵函数f(x)=|2x+a|关于直线对称,单调递增区间是[3,+∞),

∴a=-6
故答案为:-6
点评:本题考查绝对值函数,考查函数的单调性,解题的关键是确定函数的对称轴,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网