题目内容

1.已知函数f(x)=$\left\{\begin{array}{l}{(x-1)(x+3)}&{x≥1}\\{(x-1)(x-3)}&{x<1}\end{array}\right.$,则f(-1)=8,f(m+2)=$\left\{\begin{array}{l}{m}^{2}+6m+5,m≥-1\\{m}^{2}-1,m<-1\end{array}\right.$.

分析 利用分段函数直接求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{(x-1)(x+3)}&{x≥1}\\{(x-1)(x-3)}&{x<1}\end{array}\right.$,则f(-1)=-2×(-4)=8.
m≥-1时,f(m+2)=(m+1)(m+5)=m2+6m+5,
m<-1时,f(m+2)=(m+1)(m-1)=m2-1,
可得f(m+2)=$\left\{\begin{array}{l}{m}^{2}+6m+5,m≥-1\\{m}^{2}-1,m<-1\end{array}\right.$.
故答案为:8;$\left\{\begin{array}{l}{m}^{2}+6m+5,m≥-1\\{m}^{2}-1,m<-1\end{array}\right.$

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网