题目内容
1.已知函数f(x)=$\left\{\begin{array}{l}{(x-1)(x+3)}&{x≥1}\\{(x-1)(x-3)}&{x<1}\end{array}\right.$,则f(-1)=8,f(m+2)=$\left\{\begin{array}{l}{m}^{2}+6m+5,m≥-1\\{m}^{2}-1,m<-1\end{array}\right.$.分析 利用分段函数直接求解函数值即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}{(x-1)(x+3)}&{x≥1}\\{(x-1)(x-3)}&{x<1}\end{array}\right.$,则f(-1)=-2×(-4)=8.
m≥-1时,f(m+2)=(m+1)(m+5)=m2+6m+5,
m<-1时,f(m+2)=(m+1)(m-1)=m2-1,
可得f(m+2)=$\left\{\begin{array}{l}{m}^{2}+6m+5,m≥-1\\{m}^{2}-1,m<-1\end{array}\right.$.
故答案为:8;$\left\{\begin{array}{l}{m}^{2}+6m+5,m≥-1\\{m}^{2}-1,m<-1\end{array}\right.$
点评 本题考查分段函数的应用,函数值的求法,考查计算能力.
练习册系列答案
相关题目
9.函数f(x)=$\frac{1}{1-x}$+lg(2+x)的定义域是( )
A. | (-2,+∞) | B. | (-∞,-2) | C. | (-2,1) | D. | (-2,1)∪(1,+∞) |
16.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{12}x|}&{0<x≤12}\\{-\frac{1}{3}x+5}&{x>12}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )
A. | (1,12) | B. | (4,5) | C. | (12,15) | D. | (24,30) |
13.三个数a=0.152,b=20.15,c=log20.15之间的大小关系是( )
A. | c<a<b | B. | c<b<a | C. | a<b<c | D. | b<c<a |
10.已知p:$\frac{1}{4}$≤2x≤$\frac{1}{2}$,q:x+$\frac{1}{x}$∈[-$\frac{5}{2}$,-2],则q是p的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 必要条件 | D. | 既不充分也不必要条件 |