题目内容
【题目】已知函数,函数在点处的切线斜率为0.
(1)试用含有的式子表示,并讨论的单调性;
(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.
【答案】(1),单调性见解析;(2)不存在,理由见解析
【解析】
(1)由题意得,即可得;求出函数的导数,再根据、、、分类讨论,分别求出、的解集即可得解;
(2)假设满足条件的、存在,不妨设,且,由题意得可得,令(),构造函数(),求导后证明即可得解.
(1)由题可得函数的定义域为且,
由,整理得.
.
(ⅰ)当时,易知,,时.
故在上单调递增,在上单调递减.
(ⅱ)当时,令,解得或,则
①当,即时,在上恒成立,则在上递增.
②当,即时,当时,;
当时,.
所以在上单调递增,单调递减,单调递增.
③当,即时,当时,;当时,.
所以在上单调递增,单调递减,单调递增.
综上,当时,在上单调递增,在单调递减.
当时,在及上单调递增;在上单调递减.
当时,在上递增.
当时,在及上单调递增;在上递减.
(2)满足条件的、不存在,理由如下:
假设满足条件的、存在,不妨设,且,
则,
又,
由题可知,整理可得:,
令(),构造函数().
则,
所以在上单调递增,从而,
所以方程无解,即无解.
综上,满足条件的A、B不存在.
练习册系列答案
相关题目