题目内容
.已知,则此函数图象在点(1,)处的切线的倾斜角为
A.零角 | B.锐角 | C.直角 | D.钝角 |
D
分析:先求函数f(x)=excosx的导数,因为函数图象在点(1,f(1))处的切线的斜率为函数在x=1处的导数,就可求出切线的斜率,再根据切线的斜率是倾斜角的正切值,就可根据斜率的正负判断倾斜角是锐角还是钝角.
解:∵f′(x)=excosx-exsinx,∴f′(1)=e(cos1-sin1)
∴函数图象在点(1,f(1))处的切线的斜率为e(cos1-sin1)
∵e(cos1-sin1)<0,∴函数图象在点(1,f(1))处的切线的倾斜角为钝角
故选D
练习册系列答案
相关题目