题目内容
过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为( )
A、5 | ||
B、
| ||
C、
| ||
D、
|
分析:设A(x1,y1)、B(x2,y2),算出抛物线的焦点坐标,从而可设直线AB的方程为y=k(x-1),与抛物线方程联解消去x可得y2-
y-4=0,利用根与系数的关系算出y1y2=-4.根据|AF|=5利用抛物线的抛物线的定义算出x1=4,可得y1=±4,进而算出|y1-y2|=5,最后利用三角形的面积公式加以计算,即可得到△AOB的面积.
4 |
k |
解答:解:根据题意,抛物线y2=4x的焦点为F(1,0).
设直线AB的斜率为k,可得直线AB的方程为y=k(x-1),
由
消去x,得y2-
y-4=0,
设A(x1,y1)、B(x2,y2),由根与系数的关系可得y1y2=-4.
根据抛物线的定义,得|AF|=x1+
=x1+1=5,解得x1=4,
代入抛物线方程得:y12=4×4=16,解得y1=±4,
∵当y1=4时,由y1y2=-4得y2=-1;当y1=-4时,由y1y2=-4得y2=1,
∴|y1-y2|=5,即AB两点纵坐标差的绝对值等于5.
因此△AOB的面积为:
S=△AOB=S△AOF+S△BOF=
|OF|•|y1|+
|OF|•|y2|=
|OF|•|y1-y2|=
×1×5=
.
故选:B
设直线AB的斜率为k,可得直线AB的方程为y=k(x-1),
由
|
4 |
k |
设A(x1,y1)、B(x2,y2),由根与系数的关系可得y1y2=-4.
根据抛物线的定义,得|AF|=x1+
p |
2 |
代入抛物线方程得:y12=4×4=16,解得y1=±4,
∵当y1=4时,由y1y2=-4得y2=-1;当y1=-4时,由y1y2=-4得y2=1,
∴|y1-y2|=5,即AB两点纵坐标差的绝对值等于5.
因此△AOB的面积为:
S=△AOB=S△AOF+S△BOF=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
5 |
2 |
故选:B
点评:本题给出抛物线经过焦点F的弦AB,在已知AF长的情况下求△AOB的面积.着重考查了抛物线定义与标准方程、直线与圆锥曲线位置关系等知识,属于中档题.
练习册系列答案
相关题目
倾斜角为
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=( )
π |
4 |
A、
| ||
B、8
| ||
C、16 | ||
D、8 |