题目内容
【题目】已知函数, .
(1)判断函数是否有零点;
(2)设函数,若在上是减函数,求实数的取值范围.
【答案】(1)函数有零点(2)或
【解析】试题分析:(1)由函数f(x)=mx+3,g(x)=x2+2x+m,我们易给出函数f(x)﹣g(x)的零点,判断对应方程的△与0的关系,易得结论;
(2)由函数f(x)=mx+3,g(x)=x2+2x+m,我们易给出函数G(x)=f(x)﹣g(x)﹣1,若|G(x)|在[﹣1,0]上是减函数,根据对折变换函数图象的特征,我们分△≤0和△>0两种情况进行讨论,可得到满足条件的m的取值范围.
试题解析:
(1),
则,
故函数有零点;
(2),
,
①当,即时, ,
若在上是减函数,则,即,
即时,符合条件,
② 当,即或时,
若,则,要使在上是减函数,则, ,
若,则,显然在上是减函数,则.
综上, 或.
【题目】北京时间3月10日,CBA半决赛开打,采用7局4胜制(若某对取胜四场,则终止本次比赛,并获得进入决赛资格),采用2﹣3﹣2的赛程,辽宁男篮将与新疆男篮争夺一个决赛名额,由于新疆队常规赛占优,决赛时拥有主场优势(新疆先两个主场,然后三个客场,再两个主场),以下是总决赛赛程:
日期 | 比赛队 | 主场 | 客场 | 比赛时间 | 比赛地点 |
17年3月10日 | 新疆﹣辽宁 | 新疆 | 辽宁 | 20:00 | 乌鲁木齐 |
17年3月12日 | 新疆﹣辽宁 | 新疆 | 辽宁 | 20:00 | 乌鲁木齐 |
17年3月15日 | 辽宁﹣新疆 | 辽宁 | 新疆 | 20:00 | 本溪 |
17年3月17日 | 辽宁﹣新疆 | 辽宁 | 新疆 | 20:00 | 本溪 |
17年3月19日 | 辽宁﹣新疆 | 辽宁 | 新疆 | 20:00 | 本溪 |
17年3月22日 | 新疆﹣辽宁 | 新疆 | 辽宁 | 20:00 | 乌鲁木齐 |
17年3月24日 | 新疆﹣辽宁 | 新疆 | 辽宁 | 20:00 | 乌鲁木齐 |
(1)若考虑主场优势,每个队主场获胜的概率均为 ,客场取胜的概率均为 ,求辽宁队以比分4:1获胜的概率;
(2)根据以往资料统计,每场比赛组织者可获得门票收入50万元(与主客场无关),若不考虑主客场因素,每个队每场比赛获胜的概率均为 ,设本次半决赛中(只考虑这两支队)组织者所获得的门票收入为X,求X的分布列及数学期望.