ÌâÄ¿ÄÚÈÝ
ÉèÍÖÔ²C£ºx2 |
a2 |
y2 |
b2 |
F1F2 |
F2Q |
0 |
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©Èô¹ýA¡¢Q¡¢F2ÈýµãµÄԲǡºÃÓëÖ±Ïßl£ºx-
3 |
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýÓÒ½¹µãF2×÷бÂÊΪkµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©Ê¹µÃÒÔPM£¬PNΪÁڱߵÄƽÐÐËıßÐÎÊÇÁâÐΣ¬Èç¹û´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£¬Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£®
·ÖÎö£º£¨1£©ÉèQ£¨x0£¬0£©£¬ÓÉF2£¨c£¬0£©£¬A£¨0£¬b£©½áºÏÏòÁ¿Ìõ¼þ¼°ÏòÁ¿ÔËËãµÃ³ö¹ØÓÚa£¬cµÄµÈʽ£¬´Ó¶øÇóµÃÍÖÔ²µÄÀëÐÄÂʼ´¿É£»
£¨2£©ÓÉ£¨1£©Öªa£¬cµÄÒ»¸ö·½³Ì£¬ÔÙÀûÓá÷AQFµÄÍâ½ÓÔ²µÃ³öÁíÒ»¸ö·½³Ì£¬½âÕâÁ½¸ö·½³Ì×é³ÉµÄ·½³Ì×é¼´¿ÉÇóµÃËùÇóÍÖÔ²·½³Ì£»
£¨3£©ÓÉ£¨¢ò£©ÖªÖ±Ïßl£ºy=k£¨x-1£©£¬½«Ö±Ïߵķ½³Ì´úÈëÍÖÔ²µÄ·½³Ì£¬ÏûÈ¥yµÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÔÙ½áºÏ¸ùϵÊýµÄ¹ØϵÀûÓÃÏÒ³¤¹«Ê½¼´¿ÉÇóµÃÂú×ãÌâÒâµÄµãPÇÒmµÄÈ¡Öµ·¶Î§£®
£¨2£©ÓÉ£¨1£©Öªa£¬cµÄÒ»¸ö·½³Ì£¬ÔÙÀûÓá÷AQFµÄÍâ½ÓÔ²µÃ³öÁíÒ»¸ö·½³Ì£¬½âÕâÁ½¸ö·½³Ì×é³ÉµÄ·½³Ì×é¼´¿ÉÇóµÃËùÇóÍÖÔ²·½³Ì£»
£¨3£©ÓÉ£¨¢ò£©ÖªÖ±Ïßl£ºy=k£¨x-1£©£¬½«Ö±Ïߵķ½³Ì´úÈëÍÖÔ²µÄ·½³Ì£¬ÏûÈ¥yµÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÔÙ½áºÏ¸ùϵÊýµÄ¹ØϵÀûÓÃÏÒ³¤¹«Ê½¼´¿ÉÇóµÃÂú×ãÌâÒâµÄµãPÇÒmµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÉèQ£¨x0£¬0£©£¬ÓÉF2£¨c£¬0£©£¬A£¨0£¬b£©
Öª
=(-c£¬b)£¬
=(x0£¬-b)
¡ß
¡Í
£¬¡à-cx0-b2=0£¬x0=-
£¬
ÓÉÓÚ2
+
=
¼´F1ΪF2QÖе㣮
¹Ê-
+c=-2c¡àb2=3c2=a2-c2£¬
¹ÊÍÖÔ²µÄÀëÐÄÂÊe=
£¬£¨3·Ö£©
£¨2£©ÓÉ£¨1£©Öª
=
£¬µÃc=
aÓÚÊÇF2£¨
a£¬0£©Q(-
a£¬0)£¬
¡÷AQFµÄÍâ½ÓÔ²Ô²ÐÄΪ£¨-
a£¬0£©£¬°ë¾¶r=
|FQ|=a
ËùÒÔ
=a£¬½âµÃa=2£¬¡àc=1£¬b=
£¬
ËùÇóÍÖÔ²·½³ÌΪ
+
=1£¬£¨6·Ö£©
£¨3£©ÓÉ£¨¢ò£©ÖªF2£¨1£¬0£©l£ºy=k£¨x-1£©
´úÈëµÃ£¨3+4k2£©x2-8k2x+4k2-12=0
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
Ôòx1+x2=
£¬y1+y2=k£¨x1+x2-2£©£¬£¨8·Ö£©
+
=(x1-m£¬y1)+(x2-m£¬y2)=£¨x1+x2-2m£¬y1+y2£©
ÓÉÓÚÁâÐζԽÇÏß´¹Ö±£¬Ôò(
+
)•
=0
¹Êk£¨y1+y2£©+x1+x2-2m=0
Ôòk2£¨x1+x2-2£©+x1+x2-2m=0k2(
-2)+
-2m=0£¨10·Ö£©
ÓÉÒÑÖªÌõ¼þÖªk¡Ù0ÇÒk¡ÊR¡àm=
=
¡à0£¼m£¼
¹Ê´æÔÚÂú×ãÌâÒâµÄµãPÇÒmµÄÈ¡Öµ·¶Î§ÊÇ0£¼m£¼
£®£¨12·Ö£©
Öª
F2A |
AQ |
¡ß
F2A |
AQ |
b2 |
c |
ÓÉÓÚ2
F1F2 |
F2Q |
0 |
¹Ê-
b2 |
c |
¹ÊÍÖÔ²µÄÀëÐÄÂÊe=
1 |
2 |
£¨2£©ÓÉ£¨1£©Öª
c |
a |
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
¡÷AQFµÄÍâ½ÓÔ²Ô²ÐÄΪ£¨-
1 |
2 |
1 |
2 |
ËùÒÔ
|-
| ||
2 |
3 |
ËùÇóÍÖÔ²·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨3£©ÓÉ£¨¢ò£©ÖªF2£¨1£¬0£©l£ºy=k£¨x-1£©
|
´úÈëµÃ£¨3+4k2£©x2-8k2x+4k2-12=0
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
Ôòx1+x2=
8k2 |
3+4k2 |
PM |
PN |
ÓÉÓÚÁâÐζԽÇÏß´¹Ö±£¬Ôò(
PM |
PN |
MN |
¹Êk£¨y1+y2£©+x1+x2-2m=0
Ôòk2£¨x1+x2-2£©+x1+x2-2m=0k2(
8k2 |
3+4k2 |
8k2 |
3+4k2 |
ÓÉÒÑÖªÌõ¼þÖªk¡Ù0ÇÒk¡ÊR¡àm=
k2 |
3+4k2 |
1 | ||
|
1 |
4 |
¹Ê´æÔÚÂú×ãÌâÒâµÄµãPÇÒmµÄÈ¡Öµ·¶Î§ÊÇ0£¼m£¼
1 |
4 |
µãÆÀ£ºµ±Ö±ÏßÓëԲ׶ÇúÏßÏཻʱ Éæ¼°ÏÒ³¤ÎÊÌ⣬³£Óá°Î¤´ï¶¨Àí·¨¡±Éè¶ø²»Çó¼ÆËãÏÒ³¤£¨¼´Ó¦ÓÃÏÒ³¤¹«Ê½£©£»Éæ¼°ÏÒ³¤µÄÖеãÎÊÌ⣬³£Óá°µã²î·¨¡±Éè¶ø²»Ç󣬽«ÏÒËùÔÚÖ±ÏßµÄбÂÊ¡¢ÏÒµÄÖеã×ø±êÁªÏµÆðÀ´£¬Ï໥ת»¯ ͬʱ»¹Ó¦³ä·ÖÍÚ¾òÌâÄ¿µÄÒþº¬Ìõ¼þ£¬Ñ°ÕÒÁ¿ÓëÁ¿¼äµÄ¹ØϵÁé»îת»¯£¬ÍùÍù¾ÍÄÜÊ°빦±¶£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿