题目内容

19.某时钟的秒针端点A到中心点O的距离为10cm,秒针均匀地绕点O旋转.记钟面上数字12处为B点,当时间t=0时,点A与钟面上点B重合,将A,B两点的距离d(cm)表示成t(s)的函数.则d=20sin$\frac{πt}{60}$,其中t∈[0,60].

分析 可以求出$∠AOB=\frac{πt}{30}$,从而由余弦定理可以得到$d=10\sqrt{2(1-cos\frac{πt}{30})}=20\sqrt{si{n}^{2}\frac{πt}{60}}$,而由t∈[0,60]知,$sin\frac{πt}{60}≥0$,这样即可得出d=$20sin\frac{πt}{60}$.

解答 解:如图,

$∠AOB=\frac{t}{60}•2π=\frac{πt}{30}$;
∴由余弦定理得,$d=\sqrt{1{0}^{2}+1{0}^{2}-2•1{0}^{2}cos\frac{πt}{30}}$=$10\sqrt{2(1-cos\frac{πt}{30})}=10•2sin\frac{πt}{60}=20sin\frac{πt}{60}$.
故答案为:$20sin\frac{πt}{60}$.

点评 考查对钟表的认识,余弦定理用于求两点间的距离,以及二倍角的余弦公式,θ∈[0,π]时,sinθ≥0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网