ÌâÄ¿ÄÚÈÝ
ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=2012£¬¹«±Èq=-
£¬ÊýÁÐ{an}Ç°nÏîºÍ¼ÇΪSn£¬Ç°nÏî»ý¼ÇΪ¦°£¨n£©£®
£¨¢ñ£©ÇóÊýÁÐ{Sn}µÄ×î´óÏîºÍ×îСÏ
£¨¢ò£©ÅжÏ|¦°£¨n£©|Óë|¦°£¨n+1£©|µÄ´óС£¬²¢ÇónΪºÎֵʱ£¬¦°£¨n£©È¡µÃ×î´óÖµ£»
£¨¢ó£©Ö¤Ã÷{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬Èç¹ûËùÓÐÕâЩµÈ²îÊýÁеĹ«²î°´´ÓСµ½´óµÄ˳ÐòÒÀ´ÎÉèΪd1£¬d2£¬d3£¬¡dn£¬Ö¤Ã÷£ºÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®
1 | 2 |
£¨¢ñ£©ÇóÊýÁÐ{Sn}µÄ×î´óÏîºÍ×îСÏ
£¨¢ò£©ÅжÏ|¦°£¨n£©|Óë|¦°£¨n+1£©|µÄ´óС£¬²¢ÇónΪºÎֵʱ£¬¦°£¨n£©È¡µÃ×î´óÖµ£»
£¨¢ó£©Ö¤Ã÷{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬Èç¹ûËùÓÐÕâЩµÈ²îÊýÁеĹ«²î°´´ÓСµ½´óµÄ˳ÐòÒÀ´ÎÉèΪd1£¬d2£¬d3£¬¡dn£¬Ö¤Ã÷£ºÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®
·ÖÎö£º£¨¢ñ£©ÓÉSn=
=
a1[1-(-
)n]£¬ÄÜÇó³öÊýÁÐ{Sn}µÄ×î´óÏîºÍ×îСÏ
£¨¢ò£©ÓÉ|¦°£¨n£©|=|a1a2a3¡an|£¬Öª
=|an+1|=2012(
)n£¬ÓÉ
£¼1£¼
£¬ÄÜÍƵ¼³öµ±n=12ʱ£¬¦°£¨n£©×î´ó£®
£¨¢ó£©|an|ËænÔö´ó¶ø¼õС£¬ÊýÁÐ{an}µÄÆæÊýÏî¾ùÕýÊýÇҵݼõ£¬Å¼ÊýÏî¾ù¸ºÊýÇÒµÝÔö£¬ÓÉ´ËÄÜÍƵ¼³öÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬´Ó¶øÄܹ»Ö¤Ã÷ÊýÁÐ{dn}ÊǵȱÈÊýÁУ®
a1[1-(-
| ||
1-(-
|
2 |
3 |
1 |
2 |
£¨¢ò£©ÓÉ|¦°£¨n£©|=|a1a2a3¡an|£¬Öª
|¦°(n+1)| |
|¦°(n)| |
1 |
2 |
2012 |
211 |
2012 |
210 |
£¨¢ó£©|an|ËænÔö´ó¶ø¼õС£¬ÊýÁÐ{an}µÄÆæÊýÏî¾ùÕýÊýÇҵݼõ£¬Å¼ÊýÏî¾ù¸ºÊýÇÒµÝÔö£¬ÓÉ´ËÄÜÍƵ¼³öÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬´Ó¶øÄܹ»Ö¤Ã÷ÊýÁÐ{dn}ÊǵȱÈÊýÁУ®
½â´ð£º½â£º£¨¢ñ£©Sn=
=
a1[1-(-
)n]£¬
¢Ùµ±nÊÇÆæÊýʱ£¬Sn=
a1[1+(
)n]£¬µ¥µ÷µÝ¼õ£¬
¡àS1£¾S3£¾S5£¾¡£¾S2n-1£¾
a1£®
¢Úµ±nÊÇżÊýʱ£¬Sn=
a1[1-(
)n]£¬µ¥µ÷µÝÔö£¬
¡àS2£¼S4£¼S6£¼¡£¼S2n£¼
a1£®
×ÛÉÏ£¬µ±n=1ʱ£¬SnÓÐ×î´óֵΪS1=2012£» µ±n=2ʱ£¬SnÓÐ×îСֵΪS2=1006£®¡£¨4·Ö£©
£¨¢ò£©¡ß|¦°£¨n£©|=|a1a2a3¡an|£¬
¡à
=|an+1|=2012(
)n£¬
¡ß
£¼1£¼
£¬
¡àµ±n¡Ü10ʱ£¬|¦°£¨n+1£©|£¾|¦°£¨n£©|£»
µ±n¡Ý11ʱ£¬|¦°£¨n+1£©|£¼|¦°£¨n£©|£¬¡£¨6·Ö£©
ÓÖ¦°£¨10£©£¼0£¬¦°£¨11£©£¼0£¬¦°£¨9£©£¾0£¬¦°£¨12£©£¾0£¬
¡à|¦°£¨n£©|µÄ×î´óÖµÊǦ°£¨9£©ºÍ¦°£¨12£©ÖеĽϴóÕߣ®
¡ß
=a10a11a12=a113=[2011(-
)10]3£¾1£¬
¡à¦°£¨12£©£¾¦°£¨9£©£¬
Òò´Ëµ±n=12ʱ£¬¦°£¨n£©×î´ó£®¡£¨10·Ö£©
£¨¢ó£©|an|ËænÔö´ó¶ø¼õС£¬ÊýÁÐ{an}µÄÆæÊýÏî¾ùÕýÊýÇҵݼõ£¬Å¼ÊýÏî¾ù¸ºÊýÇÒµÝÔö£®
¢Ùµ±nÊÇÆæÊýʱ£¬µ÷ÕûΪan+1£¬an+2£¬an£®
Ôòan+1+an=a1(-
)n+a1(-
)n-1=
£¬2an+2=2a1(-
)n+1=
£¬
¡àan+1+an=2an+2£¬an+1£¬an+2£¬an³ÉµÈ²îÊýÁУ» ¡£¨12·Ö£©
¢Úµ±nÊÇżÊýʱ£¬µ÷ÕûΪan£¬an+2£¬an+1£»
Ôòan+1+an=a1(-
)n+a1(-
)n-1=-
£¬2an+2=2a1(-
)n+1=-
£¬
¡àan+1+an=2an+2£¬an£¬an+2£¬an+1³ÉµÈ²îÊýÁУ»
×ÛÉÏ¿ÉÖª£¬ÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ®£¨14·Ö£©
¢ÙnÊÇÆæÊýʱ£¬¹«²îdn=an+2-an+1=a1[(-
)n+1-(-
)n]=
£»
¢ÚnÊÇżÊýʱ£¬¹«²îdn=an+2-an=a1[(-
)n+1-(-
)n-1]=
£®
ÎÞÂÛnÊÇÆæÊý»¹ÊÇżÊý£¬¶¼ÓÐdn=
£¬Ôò
=
£¬
Òò´Ë£¬ÊýÁÐ{dn}ÊÇÊ×ÏîΪ
a1£¬¹«±ÈΪ
µÄµÈ±ÈÊýÁУ®¡£¨16·Ö£©
a1[1-(-
| ||
1-(-
|
2 |
3 |
1 |
2 |
¢Ùµ±nÊÇÆæÊýʱ£¬Sn=
2 |
3 |
1 |
2 |
¡àS1£¾S3£¾S5£¾¡£¾S2n-1£¾
2 |
3 |
¢Úµ±nÊÇżÊýʱ£¬Sn=
2 |
3 |
1 |
2 |
¡àS2£¼S4£¼S6£¼¡£¼S2n£¼
2 |
3 |
×ÛÉÏ£¬µ±n=1ʱ£¬SnÓÐ×î´óֵΪS1=2012£» µ±n=2ʱ£¬SnÓÐ×îСֵΪS2=1006£®¡£¨4·Ö£©
£¨¢ò£©¡ß|¦°£¨n£©|=|a1a2a3¡an|£¬
¡à
|¦°(n+1)| |
|¦°(n)| |
1 |
2 |
¡ß
2012 |
211 |
2012 |
210 |
¡àµ±n¡Ü10ʱ£¬|¦°£¨n+1£©|£¾|¦°£¨n£©|£»
µ±n¡Ý11ʱ£¬|¦°£¨n+1£©|£¼|¦°£¨n£©|£¬¡£¨6·Ö£©
ÓÖ¦°£¨10£©£¼0£¬¦°£¨11£©£¼0£¬¦°£¨9£©£¾0£¬¦°£¨12£©£¾0£¬
¡à|¦°£¨n£©|µÄ×î´óÖµÊǦ°£¨9£©ºÍ¦°£¨12£©ÖеĽϴóÕߣ®
¡ß
¦°(12) |
¦°(9) |
1 |
2 |
¡à¦°£¨12£©£¾¦°£¨9£©£¬
Òò´Ëµ±n=12ʱ£¬¦°£¨n£©×î´ó£®¡£¨10·Ö£©
£¨¢ó£©|an|ËænÔö´ó¶ø¼õС£¬ÊýÁÐ{an}µÄÆæÊýÏî¾ùÕýÊýÇҵݼõ£¬Å¼ÊýÏî¾ù¸ºÊýÇÒµÝÔö£®
¢Ùµ±nÊÇÆæÊýʱ£¬µ÷ÕûΪan+1£¬an+2£¬an£®
Ôòan+1+an=a1(-
1 |
2 |
1 |
2 |
a1 |
2n |
1 |
2 |
a1 |
2n |
¡àan+1+an=2an+2£¬an+1£¬an+2£¬an³ÉµÈ²îÊýÁУ» ¡£¨12·Ö£©
¢Úµ±nÊÇżÊýʱ£¬µ÷ÕûΪan£¬an+2£¬an+1£»
Ôòan+1+an=a1(-
1 |
2 |
1 |
2 |
a1 |
2n |
1 |
2 |
a1 |
2n |
¡àan+1+an=2an+2£¬an£¬an+2£¬an+1³ÉµÈ²îÊýÁУ»
×ÛÉÏ¿ÉÖª£¬ÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ®£¨14·Ö£©
¢ÙnÊÇÆæÊýʱ£¬¹«²îdn=an+2-an+1=a1[(-
1 |
2 |
1 |
2 |
3a1 |
2n+1 |
¢ÚnÊÇżÊýʱ£¬¹«²îdn=an+2-an=a1[(-
1 |
2 |
1 |
2 |
3a1 |
2n+1 |
ÎÞÂÛnÊÇÆæÊý»¹ÊÇżÊý£¬¶¼ÓÐdn=
3a1 |
2n+1 |
dn |
dn-1 |
1 |
2 |
Òò´Ë£¬ÊýÁÐ{dn}ÊÇÊ×ÏîΪ
3 |
4 |
1 |
2 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄ×î´óÏîÓë×îСÏîµÄÇ󷨣¬¿¼²éÊýÁеÄ×î´óÖµµÄÇ󷨣¬¿¼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâµÈ¼Ûת»¯Ë¼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿