题目内容
【题目】在直三棱柱中,底面是直角三角形,,为侧棱的中点.
(1)求异面直线、所成角的余弦值;
(2)求二面角的平面角的余弦值.
【答案】(1);(2).
【解析】
试题分析:建立空间直角坐标系,由题意写出相关点的坐标;(1)求出直线所在的方向向量,直接计算即可;(2)求出平面与平面的法向量,计算即可.
试题解析: (1)如图所示,以C为原点,CA、CB、CC1为坐标轴,建立空间直角坐标系C-xyz
则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1).
所以,,
所以.即异面直线DC1与B1C所成角的余弦值为.
(2)因为,,,所以,,所以为平面ACC1A1的一个法向量。
因为,,设平面B1DC1的一个法向量为n,n(x,y,z).
由得令x=1,则y=2,z=-2,n=(1,2,-2).
所以所以二面角B1―DC―C1的余弦值为
练习册系列答案
相关题目
【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:):根据样本估计本市生活垃圾投放情况,下列说法错误的是( )
厨余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.厨余垃圾投放正确的概率为
B.居民生活垃圾投放错误的概率为
C.该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱
D.厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000