题目内容
【题目】已知实数a,b,c.( )
A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100
B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100
C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100
D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100
【答案】D
【解析】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;
B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;
C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;
故选:D.
【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案.
练习册系列答案
相关题目