题目内容
在△ABC中,已知,且、是方程的两个根.
(1)求、、的值;
(2)若AB=,求△ABC的面积.
(1),;(2)
解析试题分析:(1)可将求解得两根,因为,所以。再用正切的两角和公式求 。(2)由(1)可知,所以且均为锐角,则由可得的值,根据正弦定理可得的边长,再根据三角形面积公式求其面积。
试题解析:解:(1)由所给条件,方程的两根. 2分
∴ 4分
6分
(或由韦达定理直接给出)
(2)∵,∴.
由(1)知,,
∵为三角形的内角,∴ 8分
∵,为三角形的内角,∴,
由正弦定理得:
∴.. 9分
由 ∴
∴ 12分
考点:1两角和差公式;2同角三角函数基本关系式;3正弦定理;4三角形面积公式。
练习册系列答案
相关题目