题目内容
【题目】若存在,使得对任意恒成立,则函数在上有下界,其中为函数的一个下界;若存在,使得对任意恒成立,则函数在上有上界,其中为函数的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列四个结论:
①1不是函数的一个下界;②函数有下界,无上界;
③函数有上界,无下界;④函数有界.
其中所有正确结论的编号为_______.
【答案】①②④ ;
【解析】
根据函数上界、下界及有界的概念,对①②③④四个命题逐一判断即可.
①,则,故函数的下界为2,选项①正确;
②,则,则当时,;
当时,,
故在内单调递减,在内单调递增,
所以有最小值m,使得在内成立,故该函数有下界,
当时,,故该函数无上界,选项②正确;
③,则,则当时,;
当时,,当时,,
故在内单调递增,在内单调递减,在内单调递增,
又函数在处无意义,且时,,
当时,,当时,,,
综上,该函数无上界,也无下界,选项③错误;
④为周期函数,且,当时,,
该函数为振荡函数,函数有界,选项④正确.
故答案为:①②④.
练习册系列答案
相关题目